bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3.67EP

(a)

Interpretation Introduction

Interpretation:

The electron shell has to be identified for the 2s electron subshell.

Concept Introduction:

Electrons are present outside the nucleus of an atom.  These electrons are restricted to some specific regions around the nucleus of an atom.  Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.

Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus.  Electron shells are numbered as 1, 2, 3, and so on.  The energy of electron increases as the distance between the nucleus and electron shell increases.  Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.

Electron subshell is the space region in the electron shell which contains the electrons that have same energy.  The number of electron subshell present for each electron shell depends upon the shell number.  Electrons are added to the electron subshell in the electron shell.  The number of electron subshell that is present in an electron shell depends only on the shell number.  If the shell number is 1, then there is only one electron subshell.  If the shell number is 2 means then there is two electron subshells and so on.

Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found.  An electron orbital can hold only two electrons irrespective of the other considerations.  “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.

Each and every orbitals have distinct shape.  This does not depend upon the shell number.  “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.

Electrons that are present within an orbital “move about” in an orbital.  Electron spins on its own either in clockwise or anticlockwise direction.  In an orbital, the two electrons that are present will have opposite spin.  If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital.  For two electrons present in the same orbital, this is the most favorable state energetically.

(b)

Interpretation Introduction

Interpretation:

The electron shell has to be identified for the 4s electron subshell.

Concept Introduction:

Electrons are present outside the nucleus of an atom.  These electrons are restricted to some specific regions around the nucleus of an atom.  Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.

Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus.  Electron shells are numbered as 1, 2, 3, and so on.  The energy of electron increases as the distance between the nucleus and electron shell increases.  Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.

Electron subshell is the space region in the electron shell which contains the electrons that have same energy.  The number of electron subshell present for each electron shell depends upon the shell number.  Electrons are added to the electron subshell in the electron shell.  The number of electron subshell that is present in an electron shell depends only on the shell number.  If the shell number is 1, then there is only one electron subshell.  If the shell number is 2 means then there is two electron subshells and so on.

Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found.  An electron orbital can hold only two electrons irrespective of the other considerations.  “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.

Each and every orbitals have distinct shape.  This does not depend upon the shell number.  “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.

Electrons that are present within an orbital “move about” in an orbital.  Electron spins on its own either in clockwise or anticlockwise direction.  In an orbital, the two electrons that are present will have opposite spin.  If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital.  For two electrons present in the same orbital, this is the most favorable state energetically.

(c)

Interpretation Introduction

Interpretation:

The electron shell has to be identified for the 3d electron subshell.

Concept Introduction:

Electrons are present outside the nucleus of an atom.  These electrons are restricted to some specific regions around the nucleus of an atom.  Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.

Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus.  Electron shells are numbered as 1, 2, 3, and so on.  The energy of electron increases as the distance between the nucleus and electron shell increases.  Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.

Electron subshell is the space region in the electron shell which contains the electrons that have same energy.  The number of electron subshell present for each electron shell depends upon the shell number.  Electrons are added to the electron subshell in the electron shell.  The number of electron subshell that is present in an electron shell depends only on the shell number.  If the shell number is 1, then there is only one electron subshell.  If the shell number is 2 means then there is two electron subshells and so on.

Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found.  An electron orbital can hold only two electrons irrespective of the other considerations.  “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.

Each and every orbitals have distinct shape.  This does not depend upon the shell number.  “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.

Electrons that are present within an orbital “move about” in an orbital.  Electron spins on its own either in clockwise or anticlockwise direction.  In an orbital, the two electrons that are present will have opposite spin.  If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital.  For two electrons present in the same orbital, this is the most favorable state energetically.

(d)

Interpretation Introduction

Interpretation:

The electron shell has to be identified for the 5p electron subshell.

Concept Introduction:

Electrons are present outside the nucleus of an atom.  These electrons are restricted to some specific regions around the nucleus of an atom.  Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.

Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus.  Electron shells are numbered as 1, 2, 3, and so on.  The energy of electron increases as the distance between the nucleus and electron shell increases.  Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.

Electron subshell is the space region in the electron shell which contains the electrons that have same energy.  The number of electron subshell present for each electron shell depends upon the shell number.  Electrons are added to the electron subshell in the electron shell.  The number of electron subshell that is present in an electron shell depends only on the shell number.  If the shell number is 1, then there is only one electron subshell.  If the shell number is 2 means then there is two electron subshells and so on.

Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found.  An electron orbital can hold only two electrons irrespective of the other considerations.  “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.

Each and every orbitals have distinct shape.  This does not depend upon the shell number.  “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.

Electrons that are present within an orbital “move about” in an orbital.  Electron spins on its own either in clockwise or anticlockwise direction.  In an orbital, the two electrons that are present will have opposite spin.  If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital.  For two electrons present in the same orbital, this is the most favorable state energetically.

Blurred answer
Students have asked these similar questions
The diagram below illustrates a quorum sensing pathway from Staphylococcus aureus. Please answer the following questions. 1. Autoinduction is part of the quorum sensing system. Which promoter (P2 or P3) is critical for autoinduction? 2)This staphylococcus aureus grows on human wounds, causing severe infections. You would like to start a clinical trial to treat these wound infections. Please describe: a) What molecule do you recommend for the trial. Why? b) Your trial requires that Staphylococcus aureus be isolated from the wound and submitted to genome sequencing before admittance. Why? What are you testing for?  3) If a mutation arises where the Promoter P3 is constitutively active, how would that influence sensitivity to AIP? Please explain your rationale. 4) This pathway is sensitive to bacterial cell density. Describe two separate mutation that would render the pathway active independent of cell density. Briefly explain your rationale. Mutation 1 Mutation 2
There is currently a H5N1 cattle outbreak in North America. According to the CDC on Feb 26*: "A multistate outbreak of HPAI A(H5N1) bird flu in dairy cows was first reported on March 25, 2024. This is the first time that these bird flu viruses had been found in cows. In the United States, since 2022, USDA has reported HPAI A(H5N1) virus detections in more than 200 mammals." List and describe two mechanisms that could lead to this H5N1 influenza strain evolving to spread in human:  Mechanisms 1: Mechanisms 2: For the mutations to results in a human epidered they would need to change how the virus interacts with the human host. In the case of mutations that may promote an epidemic, provide an example for: a protein that might incur a mutation: how the mutation would change interactions with cells in the respiratory tract (name the receptor on human cells) List two phenotypic consequence from this mutation that would increase human risk
You have a bacterial strain with the CMU operon: a) As shown in the image below, the cmu operon encodes a peptide (Pep1), as well as a kinase and regulator corresponding to a two-component system. The cmu operon is activated when Pep 1 is added to the growth media. Pep1 is a peptide that when added extracellularly leads to activation of the Cmu operon. Pep1 cmu-kinase cmu-regulator You also have these genetic components in other strains: b) An alternative sigma factor, with a promoter activated by the cmu-regulator, that control a series of multiple operons that together encode a transformasome (cellular machinery for transformation). c) the gene cl (a repressor). d) the promoter X, which includes a cl binding site (and in the absence of cl is active). e) the gene gp (encoding a green fluorescence protein). Using the cmu operon as a starting point, and assuming you can perform cloning to rearrange any of these genomic features, how would you use one or more of these to modify the…

Chapter 3 Solutions

Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card

Ch. 3.3 - Prob. 1QQCh. 3.3 - Prob. 2QQCh. 3.3 - What is the atomic mass of a hypothetical element...Ch. 3.3 - The element chlorine, which has two isotopic...Ch. 3.4 - Based on periodic table location, which pair of...Ch. 3.4 - Prob. 2QQCh. 3.4 - Prob. 3QQCh. 3.4 - Which of the following pieces of information about...Ch. 3.4 - Prob. 5QQCh. 3.5 - Prob. 1QQCh. 3.5 - Prob. 2QQCh. 3.5 - Prob. 3QQCh. 3.5 - Prob. 4QQCh. 3.6 - Prob. 1QQCh. 3.6 - Prob. 2QQCh. 3.6 - The maximum number of electrons that an electron...Ch. 3.6 - Prob. 4QQCh. 3.6 - Prob. 5QQCh. 3.6 - How many electrons can a 3d subshell accommodate?...Ch. 3.6 - Prob. 7QQCh. 3.7 - An electron configuration is a statement of how...Ch. 3.7 - How many electrons are present in atoms of the...Ch. 3.7 - The correct electron configuration for atoms of...Ch. 3.7 - Which of the following statements is consistent...Ch. 3.7 - Prob. 5QQCh. 3.7 - How many unpaired electrons are presents in the...Ch. 3.8 - Prob. 1QQCh. 3.8 - Prob. 2QQCh. 3.8 - Which of the following elements is located in the...Ch. 3.8 - Prob. 4QQCh. 3.9 - Which of the following elements is a noble-gas...Ch. 3.9 - Which of the following element-classification...Ch. 3.9 - Prob. 3QQCh. 3 - Indicate which subatomic particle (proton,...Ch. 3 - Prob. 3.2EPCh. 3 - Indicate whether each of the following statements...Ch. 3 - Indicate whether each of the following statements...Ch. 3 - How many protons, neutrons, and electrons are...Ch. 3 - Prob. 3.6EPCh. 3 - Prob. 3.7EPCh. 3 - Prob. 3.8EPCh. 3 - Prob. 3.9EPCh. 3 - What is the atomic number for atoms composed of...Ch. 3 - Prob. 3.11EPCh. 3 - Prob. 3.12EPCh. 3 - Prob. 3.13EPCh. 3 - What is the total number of nucleons present for...Ch. 3 - What is the total number of charged subatomic...Ch. 3 - What is the total number of charged subatomic...Ch. 3 - Prob. 3.17EPCh. 3 - What is the total charge (including sign)...Ch. 3 - Complete the following table by filling in the...Ch. 3 - Complete the following table by filling in the...Ch. 3 - An atom with an number of 11 contains 36 subatomic...Ch. 3 - An atom with an atomic number of 17 contains 52...Ch. 3 - Prob. 3.23EPCh. 3 - Determine the following information for an atom...Ch. 3 - Prob. 3.25EPCh. 3 - Prob. 3.26EPCh. 3 - The atomic number of the element carbon (C) is 6....Ch. 3 - The atomic number of the element sulfur (S) is 16....Ch. 3 - The following are selected properties of the most...Ch. 3 - The following are selected properties of the most...Ch. 3 - Calculate the atomic mass of each of the following...Ch. 3 - Calculate the atomic mass of each of the following...Ch. 3 - The element copper (Cu) has an atomic mass of...Ch. 3 - The element lithium (Li) has an atomic mass of...Ch. 3 - Using the information given in the following...Ch. 3 - Using the information given in the table in...Ch. 3 - Prob. 3.37EPCh. 3 - Indicate whether each of the following statements...Ch. 3 - Prob. 3.39EPCh. 3 - Indicate whether each of the following numbers are...Ch. 3 - Write the complete chemical symbol (EZA) for the...Ch. 3 - Write the complete chemical symbol (EZA) for the...Ch. 3 - Prob. 3.43EPCh. 3 - Prob. 3.44EPCh. 3 - Prob. 3.45EPCh. 3 - Prob. 3.46EPCh. 3 - Based on periodic table position, select the two...Ch. 3 - Based on periodic table position, select the two...Ch. 3 - Prob. 3.49EPCh. 3 - Prob. 3.50EPCh. 3 - How many elements exist with an atomic number less...Ch. 3 - How many elements exist with an atomic number...Ch. 3 - Prob. 3.53EPCh. 3 - Prob. 3.54EPCh. 3 - With the help of the periodic table, write...Ch. 3 - With the help of the periodic table, write...Ch. 3 - Prob. 3.57EPCh. 3 - Prob. 3.58EPCh. 3 - Prob. 3.59EPCh. 3 - Identify the nonmetal in each of the following...Ch. 3 - Prob. 3.61EPCh. 3 - Classify each of the following general physical...Ch. 3 - Prob. 3.63EPCh. 3 - Determine the following, using the periodic table...Ch. 3 - Which of the six elements nitrogen, beryllium,...Ch. 3 - Prob. 3.66EPCh. 3 - Prob. 3.67EPCh. 3 - Prob. 3.68EPCh. 3 - How many electrons can be accommodated in each of...Ch. 3 - How many electrons can be accommodated in each of...Ch. 3 - Prob. 3.71EPCh. 3 - Prob. 3.72EPCh. 3 - Prob. 3.73EPCh. 3 - How many electron orbitals are there of each of...Ch. 3 - Indicate whether each of the following statements...Ch. 3 - Indicate whether each of the following statements...Ch. 3 - Write complete electron configurations for atoms...Ch. 3 - Write complete electron configurations for atoms...Ch. 3 - Prob. 3.79EPCh. 3 - On the basis of the total number of electrons...Ch. 3 - Write complete electron configurations for atoms...Ch. 3 - Write complete electron configurations for atoms...Ch. 3 - Draw the orbital diagram associated with each of...Ch. 3 - Draw the orbital diagram associated with each of...Ch. 3 - How many unpaired electrons are present in each of...Ch. 3 - Prob. 3.86EPCh. 3 - The electron configuration of the isotope 16O is...Ch. 3 - The electron configuration of the isotope 24Mg is...Ch. 3 - Write electron configurations for the following...Ch. 3 - Write electrons configurations for the following...Ch. 3 - Indicate whether the elements represented by the...Ch. 3 - Prob. 3.92EPCh. 3 - Prob. 3.93EPCh. 3 - Specify the location of each of the following...Ch. 3 - For each of the following elements, specify the...Ch. 3 - For each of the following elements, specify the...Ch. 3 - Prob. 3.97EPCh. 3 - Prob. 3.98EPCh. 3 - Classify each of the following elements as a noble...Ch. 3 - Classify each of the following elements as a noble...Ch. 3 - Prob. 3.101EPCh. 3 - Prob. 3.102EPCh. 3 - Classify the element with each of the following...Ch. 3 - Classify the element with each of the following...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biomedical Instrumentation Systems
Chemistry
ISBN:9781133478294
Author:Chatterjee
Publisher:Cengage
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College
Text book image
Aquaculture Science
Biology
ISBN:9781133558347
Author:Parker
Publisher:Cengage
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY