Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
2nd Edition
ISBN: 9780393655551
Author: KARTY, Joel
Publisher: W. W. Norton & Company
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.20P
Interpretation Introduction

(a)

Interpretation:

The number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs are to be determined for the given molecule.

Concept introduction:

In order to determine the number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs, the line drawings must first be converted into the corresponding Lewis structures.

In the Lewis structure, a single bond represents an electron pair in a σ bonding MO. A double bond represents one pair in a σ bonding MO and one pair in a π bonding MO. Lone pairs are unshared and represent electrons occupying nonbonding MOs.

Interpretation Introduction

(b)

Interpretation:

The number of σ bonds, the number of π bonds and the number of electrons occupying nonbonding MOs are to be determined for the given molecule.

Concept introduction:

In order to determine the number of σ bonds, the number of π bonds and the number of electrons occupying nonbonding MOs, the line drawings must first be converted into the corresponding Lewis structures.

In the Lewis structure, a single bond represents an electron pair in a σ bonding MO. A double bond represents one pair in a σ bonding MO and one pair in a π bonding MO. Lone pairs are unshared and represent electrons occupying nonbonding MOs.

Interpretation Introduction

(c)

Interpretation:

The number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs are to be determined for the given ion.

Concept introduction:

In order to determine the number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs, the line drawings must first be converted into the corresponding Lewis structures.

In the Lewis structure, a single bond represents an electron pair in a σ bonding MO. A double bond represents one pair in a σ bonding MO and one pair in a π bonding MO. Lone pairs are unshared and represent electrons occupying nonbonding MOs.

Interpretation Introduction

(d)

Interpretation:

The number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs are to be determined for the given molecule.

Concept introduction:

In order to determine the number of σ bonds, the number of π bonds, and the number of electrons occupying nonbonding MOs, the line drawings must first be converted into the corresponding Lewis structures.

In the Lewis structure, a single bond represents an electron pair in a σ bonding MO. A double bond represents one pair in a σ bonding MO and one pair in a π bonding MO. Lone pairs are unshared and represent electrons occupying nonbonding MOs.

Blurred answer
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning