A First Course in Probability
9th Edition
ISBN: 9780321794772
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.17STPE
For the k-out-of-n system described in Problem 3.71, assume that each component independently works with
a.
b.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose the entire cola industry produces only two colas. Given that a person
last purchased cola 1, there a 70% chance that her next purchase will be cola 1. Given that a person
last purchased cola 2, there is an 75% chance that her next purchase will be cola 2. Suppose that each
customer makes one purchase of cola during any week (52 weeks=1 year). Suppose there are 150 million
customers. One selling unit of cola costs the company $0.5 to produce and is sold for $2. For $200 million
per year, Britney Spears (by an advertising song) guarantees to decrease from 30% to 15% the fraction
of cola 1 customers who switch to cola 2 after a purchase. Should the company that makes cola 1 hire
Britney Spears?
According to KRomenx, Snell, and Thompson, 2 the Land of Oz is blessed by many things, but not by good
weather. They never have two nice days in a row. If they have a nice day, they are just as likely to have snow
as rain the next day. If they have snow or rain, they have an even chance of having the same the next day. If
there is change from snow or rain, only half of the time is this a change to a nice day.
DRAW TRANSITION GRAPH AND PROBABLOLITY MATRIX
Part c and d solution need
Chapter 3 Solutions
A First Course in Probability
Ch. 3 - Two fair dice are rolled. What is the conditional...Ch. 3 - If two fair dice are rolled, what is the...Ch. 3 - Use Equation (2.1) to compute in a hand of bridge...Ch. 3 - What is the probability that at least one of a...Ch. 3 - An urn contains 6 white and 9 black balls. If 4...Ch. 3 - Consider an urn containing 12 balls, of which 8...Ch. 3 - The king comes from a family of 2 children. What...Ch. 3 - A couple has 2 children. What is the probability...Ch. 3 - Consider 3 urns. Urn A contains 2 white and 4 red...Ch. 3 - Three cards are randomly selected, without...
Ch. 3 - Two cards are randomly chosen without replacement...Ch. 3 - A recent college graduate is planning to take the...Ch. 3 - Suppose that an ordinary deck of 52 cards (which...Ch. 3 - An urn initially contains 5 white and 7 black...Ch. 3 - An ectopic pregnancy is twice as likely to develop...Ch. 3 - Ninety-eight percent of all babies survive...Ch. 3 - In a certain community, 36 percent of the families...Ch. 3 - A total of 46 percent of the voters in a certain...Ch. 3 - A total of 4.8 percent of the women and 37 percent...Ch. 3 - Fifty-two percent of the students at a certain...Ch. 3 - A total of 500 married working couples were polled...Ch. 3 - A red die, a blue die, and a yellow die (all six...Ch. 3 - Urn I contains 2 white and 4 red balls, whereas...Ch. 3 - Each of 2 balls is painted either black or gold...Ch. 3 - The following method was proposed to estimate the...Ch. 3 - Suppose that 5 percent of men and 0.25 percent of...Ch. 3 - All the workers at a certain company drive to work...Ch. 3 - Suppose that an ordinary deck of 52 cards is...Ch. 3 - There are 15 tennis balls in a box, of which 9...Ch. 3 - Consider two boxes, one containing 1 black and 1...Ch. 3 - Ms. Aquina has just had a biopsy on a possibly...Ch. 3 - A family has j children with probability pj, where...Ch. 3 - On rainy days, Joe is late to work with...Ch. 3 - In Example 31, suppose that the new evidence is...Ch. 3 - With probability .6, the present was hidden by...Ch. 3 - Stores A, B, and C have 50, 75, and 100 employees,...Ch. 3 - a. A gambler has a fair coin and a two-headed coin...Ch. 3 - Urn A has 5 white and 7 black balls. Urn B has 3...Ch. 3 - In Example 3a, what is the probability that...Ch. 3 - Consider a sample of size 3 drawn in the following...Ch. 3 - A deck of cards is shuffled and then divided into...Ch. 3 - Twelve percent of all U.S. households are In...Ch. 3 - There are 3 coins in a box. One is a two-headed...Ch. 3 - Three prisoners are informed by their jailer that...Ch. 3 - Suppose we have 10 coins such that if the ith coin...Ch. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Each of 2 cabinets identical n appearance has 2...Ch. 3 - Prostate cancer is the most common type of cancer...Ch. 3 - Suppose that an insurance company classifies...Ch. 3 - A worker has asked her supervisor for a letter of...Ch. 3 - A high school student is anxiously waiting to...Ch. 3 - A parallel system functions whenever at least one...Ch. 3 - If you had to construct a mathematical model for...Ch. 3 - In a class, there are 4 first-year boys, 6...Ch. 3 - Suppose that you continually collect coupons and...Ch. 3 - A simplified model for the movement of the price...Ch. 3 - Suppose that we want to generate the outcome of...Ch. 3 - Independent flips of a coin that lands on heads...Ch. 3 - The color of a persons eyes is determined by a...Ch. 3 - Genes relating to albinism are denoted by A and a....Ch. 3 - Barbara and Dianne go target shooting Suppose that...Ch. 3 - A and B are involved in a duel. The rules of the...Ch. 3 - A true - false question is to be posed to a...Ch. 3 - Assume, as in Example 3h, that 64 percent of twins...Ch. 3 - The probability of the closing of the ith relay in...Ch. 3 - An engineering system consisting of n components...Ch. 3 - In Problem 3.70a, find the conditional probability...Ch. 3 - A certain organism possesses a pair of each of 5...Ch. 3 - There is a 50—50 chance that the queen carries...Ch. 3 - On the morning of September 30, 1982, the...Ch. 3 - A town council of 7 members contains a steering...Ch. 3 - Suppose that each child born to a couple is...Ch. 3 - A and B alternate rolling a pair of dice, stopping...Ch. 3 - In a certain village, it is traditional for the...Ch. 3 - Prob. 3.76PCh. 3 - Consider an unending sequence of independent...Ch. 3 - A and B play a series of games. Each game is...Ch. 3 - In successive rolls of a pair of fair dice, what...Ch. 3 - In a certain contest, the players are of equal...Ch. 3 - An investor owns shares in a stock whose present...Ch. 3 - A and B flip coins. A starts and continues...Ch. 3 - Die A has 4 red and 2 white faces, whereas die B...Ch. 3 - An urn contains 12 balls, of which 4 are white....Ch. 3 - Repeat Problem 3.87 when each of the 3 players...Ch. 3 - Let S={1,2,...,n} and suppose that A and B are,...Ch. 3 - Consider Example 2a, but now suppose that when the...Ch. 3 - In Example 5, what is the conditional probability...Ch. 3 - In Laplace s rule of succession (Example 5e ), are...Ch. 3 - A person tried by a 3-judge panel is declared...Ch. 3 - Suppose that n independent trials, each of which...Ch. 3 - Show that if P(A)0, then P(ABA)P(ABAB)Ch. 3 - Prob. 3.2TECh. 3 - Consider a school community of m families, with ni...Ch. 3 - A ball is in any one of n boxes and is in the ith...Ch. 3 - a. Prove that if E and F are mutually exclusive,...Ch. 3 - Prove that if E1,E2,...,En are independent events,...Ch. 3 - a. An urn contains n white and m black balls. The...Ch. 3 - Let A, B, and C, be events relating to the...Ch. 3 - Consider two independent tosses of a fair coin....Ch. 3 - Two percent of women age 45 who participate in...Ch. 3 - In each of n independent tosses of a coin, the...Ch. 3 - Show that 0ai1,i=1,2,..., then...Ch. 3 - The probability of getting a head on a single toss...Ch. 3 - Suppose that you are gambling against an...Ch. 3 - Independent trials that result in a success with...Ch. 3 - Prob. 3.16TECh. 3 - Prob. 3.17TECh. 3 - Let Q. denote the probability that no run of 3...Ch. 3 - Consider the gamblers ruin problem, with the...Ch. 3 - Prob. 3.20TECh. 3 - The Ballot Problem. In an election, candidate A...Ch. 3 - As a simplified model for weather forecasting,...Ch. 3 - A bag contains a white and b black balls. Balls...Ch. 3 - A round-robin tournament of n contestants is a...Ch. 3 - Prove directly thatP(EF)=P(EFG)P(GF)+P(EFGC)P(GCF)Ch. 3 - Prove the equivalence of Equations (5.11) and...Ch. 3 - Prob. 3.27TECh. 3 - Prove or give a counterexample, if E1 and E2 are...Ch. 3 - In Laplaces rule of succession (Example 5e ), show...Ch. 3 - In Laplaces rule of succession (Example 5e),...Ch. 3 - Prob. 3.31TECh. 3 - In a game of bridge, West has no aces What is the...Ch. 3 - Prob. 3.2STPECh. 3 - How can 20 balls, 10 white and 10 black, be put...Ch. 3 - Prob. 3.4STPECh. 3 - An urn has r red and w white balls that are...Ch. 3 - An urn contains b black balls and r red balls. One...Ch. 3 - A friend randomly chooses two cards, without...Ch. 3 - Show that P(HE)P(GE)=P(H)P(G)P(EH)P(EG). Suppose...Ch. 3 - You ask your neighbor to water a sickly plant...Ch. 3 - Six balls are to be randomly chosen from an urn...Ch. 3 - A type C battery is in working condition with...Ch. 3 - Prob. 3.12STPECh. 3 - Balls are randomly removed from an urn that...Ch. 3 - A coin having probability .8 of landing on heads...Ch. 3 - In a certain species of rats, black dominates over...Ch. 3 - a. In Problem 3.70b, find the probability that a...Ch. 3 - For the k-out-of-n system described in Problem...Ch. 3 - Prob. 3.18STPECh. 3 - Prob. 3.19STPECh. 3 - Suppose that there are n possible outcomes of a...Ch. 3 - If A flips vand B flips n fair coins, show that...Ch. 3 - Prove or give counterexamples to the following...Ch. 3 - Let A and B be events having positive probability....Ch. 3 - Rank the following from most likely to least...Ch. 3 - Two local factories, A and B, produce radios. Each...Ch. 3 - Show that if P(AB)=1, then P(BCAC)=1Ch. 3 - Prob. 3.27STPECh. 3 - A total of 2n cards, of which 2 are aces, are to...Ch. 3 - There are n distinct types of coupons, and each...Ch. 3 - Show that for any events E and F,P(EEF)P(EF) Hint:...Ch. 3 - There is a 60 percent chance that event A will...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- 2. Suppose that in Example 2.27, 400 units of food A, 500 units of B, and 600 units of C are placed in the test tube each day and the data on daily food consumption by the bacteria (in units per day) are as shown in Table 2.7. How many bacteria of each strain can coexist in the test tube and consume all of the food? Table 2.7 Bacteria Strain I Bacteria Strain II Bacteria Strain III Food A 1 2 0 Food B 2 1 3 Food C 1 1 1arrow_forwardSuppose a company charges a premium of $150 per year for an insurance policy for storm damage to roofs. Actuarial studies show that in case of a storm, the insurance company will pay out an average of $8000 for damage to a composition shingle roof and an average of $12,000 for damage to a shake roof. They also determine that out of every 10,000 policies, there are 7 claims per year made on composition shingle roofs and 11 claims per year made on shake roofs. What is the company’s expected value (i.e., expected profit) per year of a storm insurance policy? What annual profit can the company expect if it issues 1000 such policies? Determine the probability of a composition shingle roof claim out of 10,000 = ______ Determine the probability of a shake roof claim out of 10,000 = ______ How many claims are made out of 10,000? = _______ What is the probability of no claims out of 10,000? = _______ How much does each shingle roof claim cost the company, don’t forget each person pays $150…arrow_forwardIn a classic study of problem solving, Duncker (1945) asked participants to mount a candle on a wall in an upright position so that it would burn normally. One group was given a candle, a book of matches, and a box of tacks. A second group was given the same items, except that the tacks and the box were presented separately as two distinct items. The solution to this problem involves using the tacks to mount the box on the wall, creating a shelf for the candle. Duncker reasoned that the first group of participants would have trouble seeing a new function for the box (a shelf) because it was already serving a function (holding tacks). For each participant, the amount of time to solve the problem was recorded. Data similar to Duncker’s are as follows. Time to Solve Problem (in sec.) Box of Tacks Tacks and Box Separate 128 42 160…arrow_forward
- solution for q6arrow_forwardThree balanced coins are tossed independently. One of the variables of interest is Y₁, the number of heads. Let Y₂ denote the amount of money won on a side bet in the following manner. If the first head occurs on the first toss, you win $1. If the first head occurs on toss 2 or on toss 3 you win $2 or $3, respectively. If no heads appear, you lose $1 (that is, win -$1). a Find the joint probability function for Y₁ and Y2. b What is the probability that fewer than three heads will occur and you will win $1 or less? [That is, find F(2, 1).]arrow_forwardConsider a large system which consists of three separate components. These components are connected in "parallel" in the sense that the system will fail if and only if all the components fail. Another way to say this is that the system will succeed in working fine if any of its components are working. The first of these components works with a probability of 0.7; the second of these components works with a probability 0.6; finally, third component works with a probability of 0.7. What is the probability that the whole system works fine?arrow_forward
- B) Assume that a WIN results in a value of 0. Further, assume that the probability of converting a 2-point conversion is p=39%. Should Temple’s coach go for a 1-point conversion or 2-point conversion after scoring the first touchdown? The Temple coach will ______(should go or should not go) for 2 points after first touchdown.arrow_forward3) Suppose that Bob can decide to go to work by one of the three modes of transportation; car, bus, or train. Because of high traffic, if he decides to go by car, there is a 50% chance he will be late. If he goes by bus there is a 20% chance he will be late. If he goes by train there is only 1% chance that he will be late. Suppose he takes the car 10% of the time, the bus 1% of the time, and the train 89% of the time, a) What is the probability that Bob will be late getting to work? b) What is the probability that he went to work in his car today given that he was late?arrow_forwardSuppose there are three desks, each with two drawers. One desk contains a gold medal in each drawer, one contains a silver medal in each drawer, and one contains one of each, but you don’t know which desk is which. The question is this: If you open a drawer and find a gold medal, what are the chances that the other drawer in that desk also contains gold?arrow_forward
- Please show a step-by-step solution. Do not skip steps, and explain your steps. Write it on paper, preferably. Make sure the work is clear.arrow_forwardA casino offers the following game, which costs 10 dollars to play. Two cards are selected at random without replacement from a standard deck of 52 cards. If both of the cards are kings, you win 220 dollars and get your 10 dollars back. If exactly one of the cards is a king, you win 20 dollars and get your 10 dollars back, Otherwise, you lose the 10 dollars. Let X be equal to the amount of money won as the result of playing this game one time, where winning a negative amount is equivalent to losing that amount. Find P(X>0) Find E(X)arrow_forwardSuppose Gabe, an elementary school student, has just finished dinner with his mother, Judy. Eyeing the nearby cookie jar, Gabe asks his mother if he can have a cookie for dessert. She tells Gabe that she needs to check his backpack to make sure that he finished his homework. Gabe cannot remember where he left his backpack, but he knows for sure that he did not complete his homework and will not be allowed to eat a cookie. Gabe believes his only option is to quickly steal a cookie while his mother is out of the room. Judy then leaves the room to look for Gabe's backpack. Assume that Judy could return at any time in the next 9090 seconds with equal p Judy then leaves the room to look for Gabe's backpack. Assume that Judy could return at any time in the next 9090 seconds with equal probability. For the first 4040 seconds, Gabe sheepishly wonders if he will get caught trying to grab a nearby cookie. After waiting and not seeing his mother, Gabe decides that he needs a cookie and begins to…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
12. Searching and Sorting; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=6LOwPhPDwVc;License: Standard YouTube License, CC-BY
Algorithms and Data Structures - Full Course for Beginners from Treehouse; Author: freeCodeCamp.org;https://www.youtube.com/watch?v=8hly31xKli0;License: Standard Youtube License