Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin that lands on heads with some unknown probability p that need not be equal to 1 2 . Consider the following procedure for accomplishing our task: 1. Flip the coin. 2. Flip the coin again. 3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment. a. Show that the result is equally likely to be either heads or tails. b. Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?
Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin that lands on heads with some unknown probability p that need not be equal to 1 2 . Consider the following procedure for accomplishing our task: 1. Flip the coin. 2. Flip the coin again. 3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment. a. Show that the result is equally likely to be either heads or tails. b. Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?
Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin that lands on heads with some unknown probability p that need not be equal to
1
2
. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1.
4. Let the result of the last flip be the result of the experiment.
a. Show that the result is equally likely to be either heads or tails.
b. Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License