Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
Question
Book Icon
Chapter 3, Problem 1CQ
To determine

To Explain: The way, the two objects at unequal temperatures can be enabled to reach the same temperature.

The way, the electromagnetic radiation enclosed in a cavity has the same temperature as that of cavity walls.

Expert Solution & Answer
Check Mark

Explanation of Solution

Introduction:

Thermal equilibrium is a state of equilibrium in which the temperature of both the objects becomes the same and there is no further transfer of heat.

In order to make the temperatures of both the objects the same, one has to bring them in contact. Once they are in contact, the heat starts to flow from a higher temperature object to a lower temperature object. The process of heat transfer continues until they reach a state of thermal equilibrium.

The above idea holds true for electromagnetic radiation enclosed in a cavity. The electromagnetic radiation radiates heat which is absorbed by the cavity. This radiation of heat occurs until thermal equilibrium is achieved. At thermal equilibrium, both the radiation inside the cavity and the cavity walls have the same temperature.

Conclusion:

Thus, the temperature of electromagnetic radiation enclosed in a cavity has the same temperature as that of the cavity walls due to thermal equilibrium.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
For what type of force is it not possible to define a potential energy expression?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax