Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 11E
(a)
To determine
The Planck’s spectral energy density in the limit of small frequencies.
(b)
To determine
The Planck’s spectral energy density at high frequencies.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Planck's radiation law can be written
ux
=
8лhc 1
25 eßhc/2-1
Show that the wavelength corresponding to the maximum energy density of the
radiation fulfills the condition
λmax T
=
.
constant
What is this constant? (This result is known as Wien's transition law.) Tip: you can
solve the constant approximation by e.g. iterating an equation of the form
Xn = 5 (1-e¯Xn-1)
with a suitable initial value x1.
The wavelength λmax at which the Planck distribution is a maximum can be found by solving dρ(λ,T)/dT = 0. Differentiate ρ(λ,T) with respect to T and show that the condition for the maximum can be expressed as xex − 5(ex − 1) = 0, where x = hc/λkT. There are no analytical solutions to this equation, but a numerical approach gives x = 4.965 as a solution. Use this result to confirm Wien’s law, that λmaxT is a constant, deduce an expression for the constant, and compare it to the value quoted in the text.
please solve asap
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A simplified parabolic E-K diagram for an electron in the conduction band is given in Figure 3. Determine the relative effective mass, m'/m.. given the E – E. = C,k², value of a of 1 nm, Planck constant h = 6.625 × 10-34 J. s, free electron mass m, = 9.11 x 10-31 kg, electric charge q = 1.6 x 10-19 C and 1 eV = 1.6 x 10-19 J. E E = E,+0.32 eV Figure 3arrow_forward(a) A vacuum photocell is sequentially illuminated with light of different wavelengths 2. A voltmeter is used to determine that there is a different voltage between the cathode and the anode. V (iii) Determine a relation for Planck's constant in terms of pairs of voltage measurements at different wavelengths such that W₁ cancels out. (iv) Evaluate Planck's constant for the following pair of measurements: measurement 1 finds = 447 nm and V=635 mV, and measurement 2 finds = : 502 nm and V=339 mV.arrow_forwardI need the answer as soon as possiblearrow_forward
- (a) Calculate the speed of an electron that is in the n = 1 orbit of a hydrogen atom, and give your answerv as a fraction of the speed of light in empty space c, for example, v = 0.5 if the answer werev = c/2 = 1.50 × 108 m/s. (It isn’t.)(b) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 3 orbit to the n = 2 orbit? This is the Hα line, and its light is scarlet, the color offresh human blood.(c) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 2 orbit to the n = 1 orbit?(d) How many nanometers would be the wavelength of a photon that would have the minimum amount ofenergy needed to ionize any hydrogen atom? (Hint: Electromagnetic radiation with this wavelength or shorteris called extreme ultraviolet radiation.(e) How many electron-volts (eV) would the electron in part (7)(d) need to have?arrow_forward(2.13) Selection rules in hydrogen Hydrogen atoms are excited (by a pulse of laser light that drives a multi-photon process) to a spe- cific configuration and the subsequent spontaneous emission is resolved using a spectrograph. Infra- red and visible spectral lines are detected only at the wavelengths 4.05 um, 1.87 µm and 0.656 µm. Explain these observations and give the values of n and l for the configurations involved in these transitions.arrow_forwardFor the thermal radiation from an ideal blackbody radiator with a surface temperature of 2000 K, let Ic represent the intensity per unit wavelength according to the classical expression for the spectral radiancy and IP represent the corresponding intensity per unit wavelength according to the Planck expression.What is the ratio Ic/IP for a wavelength of (a) 400 nm (at the blue end of the visible spectrum) and (b) 200 mm (in the far infrared)? (c) Does the classical expression agree with the Planck expression in the shorter wavelength range or the longer wavelength range?arrow_forward
- Find x value.arrow_forwardDetermine the maximum of the Planck distribution (for the three dimensional case) as a function of the frequency and the wavelength. Show that this is possible if we maximize the function x"/(e – 1) for a = 3 and a 5 respectively. This means solving the equation x = a(1 - e-*), which can be done in an iterative way Xp = a(1 -en-1), starting from x1 = 1 (stop after 5 iterations). Verify Wien law, Amar T =const., and comment on the fact that we find two different constants in the two approaches. We know that the sun produces the largest amount of radiation around the wave- length 5 x 10-5 cm. Using the results previously obtained, determine: • the temperature of the sun; • the amount of energy produced, knowing that the main mechanism of produc- tion of such energy is the transformation of hydrogen into helium, and that this reaction stops when 10% of the hydrogen has been converted. A good approxi- mation is to take the whole mass of the hydrogen equal to the mass of the sun (use…arrow_forwardGiven this quantum state: ¥(r,0,0) = R(r)(√₂Y+Y¹-Y₂²), a) measured: |Z|² , find possible outcomes, corresponding probabilities and the average value b) repeat the same but instead with measured say Lz c) If you had first measured Lz to be planck's constant, and then measured |Z|² what can be said about the result of |Z|² ?arrow_forward
- Provide answer ASAP and correctarrow_forwardOutline the steps leading to the formula for the number of photons with angular fre- quencies between w and w + dw in blackbody radiation at a temperature T: w? dw V n(w)dw = 2 x 272c3 ehw/kBT Show that n(w) has a peak at a frequency given by w = 1.59kgT/h. Show further that the spectral energy densities ux and uw peak at Amax = hc/(4.97KBT) and wmax = 2.82KBT/ħ, respectively.arrow_forward(b) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 110 eV. The value of the Planck’s constant is equal to 6.63 * 10-34 Js.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning