Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 33E
To determine
To Explain:Some X-rays of the incident wavelength are being scattered at all angles.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assuming a photon- free electron scattering in Compton
effect, calculate the momentum of incident photon,
scattered photon and recoiling electron. Find the angle
through which the electrons are scattered.
do=0.00248 nm
8 = 90°
Planck's constant=6.63x10-34 Js; Mass of electron =
9.1x10-31 Kg; Speed of light in vacuum = 3.0x10$ m/s
Intensity
Q5 X-rays of wavelength 1 = 84 pm are scattered from a carbon target, and
the scattered rays are detected at 158° to the incident beam. Evaluate:
(i)
The Compton shift of the scattered rays.
(ii)
The percentage of the initial x-ray photon energy that is
transferred to an electron in the scattering.
Take,
Planck Constant h = 6.63 x 10-34 J. S
Speed of light c = 3.00 x 10°m/s
Mass of electron = 9.11 × 10-31kg
Compton used photons of wavelength 0.0711 nm.
(a) What is the energy of these incident photons?
4
(b) What is the wavelength of the photons scattered at an angle of 180°?
(c) What is the energy of the photons scattered at an angle of 180°?
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the work function of a metal is 3.2 eV, what is the maximum wavelength that a photon can have to eject a photoelectron from this metal surface?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardA 0.75-nm photon is scattered by a stationary electron. The speed of the electron’s recoil is 1.5106 m/s. (a) Find the wavelength shift of the photon. (b) Find the scattering angle of the photon.arrow_forward
- What is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardAt what velocity will an electron have a wavelength of 1.00 m?arrow_forwardWhat is the maximum kinetic energy of photoelectrons ejected from sodium by the incident radiation of wavelength 450 nm?arrow_forward
- In a photoelectric experiment using a sodium surface, you find a stopping potential of 1.86 V for a wavelength of 300 nm and a stopping potential of 0.885 V for a wavelength of 393 nm. From these data find (a) a value for the Planck constant, (b) the work function for sodium, and (c) the cutoff wavelength Ao for sodium. (a) Number i (b) Number i (c) Number i Units Units Units >arrow_forwardThe energy of an ultraviolet light is 3.28 eV. (i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C). (ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg).arrow_forward(dB-1) The mass of a proton is 1.67x10-27 kg and the mass of an electron is 9.11×10-31 kg. A typical car has a mass of ~1000 kg. (a) Find the de Broglie wavelength (in nm) of a proton with a kinetic energy of 2.50 eV. (b) Find the de Broglie wavelength (in nm) of a 2.50 eV electron. (c) Estimate the de Broglie wavelength of a car driving down the highway. You can round to the nearest oder of magnitude. (d) In general, what can we conclude about the de Broglie wavelengths of macroscopic objects? Are the wave qualities of macroscopic objects noticeable?arrow_forward
- Photoelectrons with a maximum kinetic energy of 7.95 eV are emitted from a metal when it is illuminated by ultraviolet radiation with a wavelength of 1.25 × 10-7 m. (i) Calculate the energy of the incident photons in electronvolts. (ii) Calculate the wavelength of the radiation (in nanometres) corresponding to the lowest energy photons that can free electrons from the metal. (iii) How do you explain the fact that, when infrared radiation is shone on this metal, no photoelectrons are emitted?arrow_forwardX-rays of wavelength A = 22 pm (photon energy 56.3 keV) are scattered from a Carbon target and the scattered rays are detected at an angle of 85° to the incident beam. What is the Compton shift in pm of the scattered rays? (continued) What percentage of the initial X-ray photon energy is transferred to an electron in such scattering?arrow_forwardAfter Compton scattering, the momentum of the photon is decreased to 5.20x10-23 kg m/s, and that of the electron is increased from O to 1.10x10-22 kg m/s. Determine the traveling direction (with reference to the incident direction) of the scattered photonarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill