Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 40E
(a)
To determine
Wavelength of the photon when the pair is stationary
(b)
To determine
Wavelength of the photon when each moves off at 0. 6c , perpendicular to the motion of the photon.
(c)
To determine
Fraction of photon’senergy must be absorbed by the lead nucleus in above 2 scenarios.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.00-fm photon has a wavelength short enough to detect some information about nuclei. (a) What is the photon momentum? (b) What is its energy in joules and MeV? (c) What is the (relativistic) velocity of an electron with the same momentum? (d) Calculate the electron’s kinetic energy.
Consider a fission nuclear explosion producing a temperature of 24 million K (25∗107 K). a) What is be the peak wavelength of the thermally produced photons? b) What is the energy (in eV) for this peak wavelength photon?
While performing research with gaseous hydrogen at a high enough temperature that the H2 molecules have dissociated to H atoms, you notice that atoms in your hydrogen sample are ionized by photons of energy 2.28 eV that are incident on the sample. You wish to determine two things: (a) the minimum value for n for the hydrogen atoms that are being ionized, and (b) the speed of the electrons released in the ionization process when they are far from the atom.
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At what velocity does a proton have a 6.0-fm wavelength (about the size of a nucleus)? Give your answer in units of c.arrow_forwardWhat is the longest wavelength of radiation that can eject a hotoelectron from potassium, given the work function of potassium 2.24 eV? Is it in the visible range?arrow_forwardA carbon dioxide laser used in surgery emits infrared radiation with a wavelength of 10.6 µm . In 1.00 ms, this laser raised the temperature of 1.00 cm of flesh to and evaporated it. (a) How many photons were required? You may assume that flesh has the same heat of vaporization as water, (b) What was the minimum power output during the flash?arrow_forward
- Experiments are performed with ultra-cold neutrons having velocities as small as 1.00 m/s. (a) What is the wavelength of such a neutron? (b) What is its kinetic energy in eV?arrow_forwardA photon of energy 5.0 keV collides with a stationary electron and is scattered at an angle of 60°. What is the energy acquired by the electron in the collision?arrow_forwardExperiments have shown that the nervous system of the human eye effectively takes about 30 "frames" per second (like a movie camera) and that when the eye is fully dark-adapted, it needs to receive only about 500 visible photons per frame from an object to register it. Out sun radiates a power of about 3.9 x 1026W at all wavelengths, peaking in the yellow region of the spectrum (but only about one-half of this energy is in the visible range). The pupil of your dark-adapted eye has a diameter of about 8 mm. Estimate how far away a star like the sum could be and still be visible to the naked eye. The nearest visible star is about 4 ly away and most stars we see in the sky are hundreds of light years away. What does this mean for most visible stars' intrinsic brightness compared to the sun's intrinsic brightness?arrow_forward
- Consider an x-ray beam, with λ = 1.00 Å, and also a y-ray beam from a 137Cs radioactive source, with = 1.88 x 10-¹² Å. If the radiation scattered beam from free electrons is viewed at 90° to the incident beam: a) What's the Compton wavelength shift in each case? b) What kinetic energy is given to a recoiling electron in each case? c) What percentage of the incident photon energy is lost in the collision in each case?arrow_forwardSuppose photons are produced in a cathode ray tube (CRT) from electrons which are accelerated across a potential of 24.5 kV. Part (a) What is the maximum energy, in electron volts, of the photons? Part (b) What is the maximum frequency, in hertz, of these photons?arrow_forwardSee Attachedarrow_forward
- Most microwave ovens emit electro-magnetic radiation with a wavelength () of 12.24 cm. This EM-radiation is used to heat stuff up, like food, and it is emitted at a rate of 6.30 × 1026 photons/second for a typical microwave. How long will it take to boil a 175.0 mL cup of water initially at 25.5 ºC (water boils at 100.0 ºC) if 45.0% of the photons emitted by the microwave oven are absorbed by the water? My answer does not even make any sort of rational sense...arrow_forwardA light detector has an area of 3.1m2 and absorbs 53.9% of the incident light, which is at wavelength 682.3nm. The detector faces an isotropic source, 2.1m from the source. If the detector absorbs photons at the rate of exactly 6photons/s , at what rate( in photons/s) does the emitter emit light?arrow_forwardA sodium lamp emits light at the power P = 100 W and at the wavelength = 593 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon /cm²s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 2.40 m from the lamp? (a) Number (b) Number i MI (c) Number i Units Units Units <arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College