Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 31E
(a)
To determine
To Find: The direction of scatter of the photon.
(b)
To determine
To Find: The direction of scatter of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A photon with wavelength I = 0.1385 nm scatters from an electron that is initially at rest. What must be the angle between the direction of propagation of the incident and scattered photons if the speed of the electron immediately after the collision is 8.90 x 106 m/s?
After a 0.8 mm x-ray photon scatters from a free electron, the electron recoils at
1.4 x 106 m/s.
(a) What is the Compton shift in the photon's wavelength?
(b) Through what angle is the photon scattered?
A 2.0 - kg object falls from a height of 5.0 m to the ground. If the change in the object’s kinetic energy could be converted to visible light of wavelength 5.0 x 10-7 m, how many photons would be produced?
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the work function of a metal is 3.2 eV, what is the maximum wavelength that a photon can have to eject a photoelectron from this metal surface?arrow_forwardWhat is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardA x-ray photon of wavelength 147.0 pm is scattered through an angle of 60° by an electron that is initially at rest. (a) Calculate the wavelength of the scattered x-ray photon. (b) How much kinetic energy does the electron carry?arrow_forward
- A photon with wavelength I = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0° from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?arrow_forwardAn incident x-ray photon is scattered from a free electron that is initially at rest. The photon is scattered straight back at an angle of 180 from its initial direction. The wavelength of the scattered photon is 0.0830 nm. (a) What is the wavelength of the incident photon? (b) What are the magnitude of the momentum and the speed of the electron after the collision? (c) What is the kinetic energy of the electron after the collision?arrow_forwardAn x-ray photon with wavelength 15.0 pm is scattered at 84.0° by an electron. What is the wavelength of the scattered photon?arrow_forward
- Problem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.arrow_forwardA helium‑neon laser produces light of wavelength 632.8 nm. The laser beam carries a power of 0.75 mW and strikes a target perpendicular to the beam. How many photons per second, n, strike the target? n = ? photons/s At what rate R does the laser beam deliver linear momentum to the target if the photons are all absorbed by the target? R = ? kg·m/s2arrow_forwardA photon with wavelength l = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0 from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?arrow_forward
- A helium–neon laser emits laser light at a wavelength of 632.8 nm and a power of 2.3 mW. At what rate are photons emitted by this device?arrow_forwardX-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!] (a) What is the wavelength of the scattered photons? nm (b) What is the momentum of the incident photons? eV/c What is the momentum of the scattered photons? eV/c (c) What is the kinetic energy of the scattered electrons? eV (d) What is the momentum (magnitude and angle) of the scattered electrons? eV/carrow_forwardA photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax