Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 51CE
To determine
General expression for the photon flux in terms of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the wavelength (in m) of a 2.06 eV photon?
Find its frequency in hertz.
(a) Find the momentum (in kg - m/s) of a 44.5 kev x-ray photon.
|kg · m/s
(b) Find the equivalent velocity (in m/s) of a neutron with the same momentum.
m/s
(c) What is the neutron's kinetic energy (in ev)?
ev
Photons of a certain infrared light have an energy of 1.05 10-19 J.
(a) What is the frequency of this IR light?
(b) Use ? = c/f to calculate its wavelength in nanometers.
Chapter 3 Solutions
Modern Physics
Ch. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - A ball rebounds elastically from the floor. What...Ch. 3 - Prob. 9CQCh. 3 - Prob. 10CQ
Ch. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - What is the stopping potential when 250 nm...Ch. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Verify that the Chapter 2 formula KE=mc2 applies...Ch. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47CECh. 3 - Prob. 49CECh. 3 - Prob. 50CECh. 3 - Prob. 51CECh. 3 - Prob. 52CECh. 3 - Prob. 53CECh. 3 - Prob. 54CECh. 3 - Prob. 55CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardShow that the energy E in eV of a photon is given by E=1.241106 m/A. where A is its wavelength in meters.arrow_forwardThe energy emitted by a black body's surface per unit area at a particul ar wavelength can be calcul ated using Planck's Radiation Law, which can be written as follows, 2nhc? E(2, T) = 25. (ehc/kT -1) where his Planck's constant 6.626 x 10-27 erg.s, c is the speed oflight, kis the Boltzmann constant = 1.38 x 10-18 erg/K, Tis the temperature in Kelvins and A is the wavelength in um. If E is given in erg/um?, what are the units of the constant 2n, given that the equation is valid and therefore dimensionally homogenous? If the speed of light is 3.00x10$ m/s, what value and unit should be used for c in this equation to maintain dimensional homogeneity? Note: erg is a unit of energy equal to 10-7 Joules and the whole expression (ehc/AkT – 1) ends up dimensionless. -arrow_forward
- What is the energy of a photon if it's frequency is 1.00s-1?arrow_forward1.arrow_forwardX-rays are usually produced by making high-velocity electrons collide with metallic targets. For electrons accelerated in a field of 75,000 volts,a. compute the wavelength (in nm) of the x-rays producedb. if this same kinetic energy is transferred to a proton, how fast would the proton be traveling (in m/s)?arrow_forward
- A blackbody is radiating at a temperature of 2.10 x 103 K. (a) What is the total energy density of the radiation? 9.18e16 eV/m3 (b) What fraction of the energy is emitted in the interval between 1.50 and 1.55 eV? (Give your answer in decimal or scientific notation.) 1.662e-17 (c) What fraction is emitted between 10.25 and 10.30 eV? (Give your answer in decimal or scientific notation.) 5.448e-19arrow_forwardGamma rays (?-rays) are high-energy photons. In a certain nuclear reaction, a ?-ray of energy 0.836 MeV (million electronvolts) is produced. Compute the frequency of such a photon. How do I enter 2.02*10^20 in the answer window?arrow_forwardConsider a fission nuclear explosion producing a temperature of 24 million K (25∗107 K). a) What is be the peak wavelength of the thermally produced photons? b) What is the energy (in eV) for this peak wavelength photon?arrow_forward
- Find the momentum (in kg·m/s) of a 11.0 keV x-ray photon. What is the neutron's kinetic energy (in keV)?arrow_forwardA light bulb emits EMR with a frequency of 5.00x10^14 Hz. If the TOTAL amount of Energy it produces is 5.00 MJ, how many photons are emitted?arrow_forwardQuick response will be upvoted.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill