OPERATIONS MANAGEMENT CUSTOM ACCESS
11th Edition
ISBN: 9780135622438
Author: KRAJEWSKI
Publisher: PEARSON EDUCATION (COLLEGE)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 15P
(a)
Summary Introduction
Interpretation: The p-chart is to be constructed.
Concept Introduction:
The monitoring of the nonconforming units in sample in statistical quality control is done by the representation of the p-chart.
(b)
Summary Introduction
Interpretation: The waiting time of the patients is to be concluded.
Concept Introduction:
The monitoring of the nonconforming units in sample in statistical quality control is done by the representation of the p-chart.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The overall average on a process you are attempting to monitor is
60.0
units. The process population standard deviation is
1.72.
Sample size is given to be
4.
Part 2
a) Determine the 3-sigma
x-chart
control limits.
Upper Control Limit
(UCLx)=enter your response here
units (round your response to two decimal places).
Part 3
Lower Control Limit
(LCLx)=enter your response here
units (round your response to two decimal places).
Part 4
b) Now determine the 2-sigma
x-chart
control limits.
Upper Control Limit
(UCLx)=enter your response here
units (round your response to two decimal places).
Part 5
Lower Control Limit
(LCLx)=enter your response here
units (round your response to two decimal places).
Part 6
How do the control limits change?
A.
The control limits are tighter for the 3-sigma
x-chart
than for the 2-sigma
x-chart.
B.
The control limits for the
2-sigma
x-chart
and for the 3-sigma
x-chart
are the same.
C.
The control limits…
An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations.
Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.
The results of inspection of DNA samples taken over the past 10 days are given below. Sample size is 100.
LCLp
Day
Defectives
=
1
5
2
7
3
7
4
9
5
5
6
6
a) The upper and lower 3-sigma control chart limits are:
UCL = 0.127 (enter your response as a number between 0 and 1, rounded to three decimal places).
(enter your response as a number between 0 and 1, rounded to three decimal places).
7
1
8
6
9
10
10
1
Chapter 3 Solutions
OPERATIONS MANAGEMENT CUSTOM ACCESS
Ch. 3 - Should a very pricey handcrafted object of beauty...Ch. 3 - Prob. 2DQCh. 3 - Prob. 3DQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7P
Ch. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 31PCh. 3 - Prob. 1AMECh. 3 - Prob. 2AMECh. 3 - Prob. 3AMECh. 3 - Prob. 4AMECh. 3 - Prob. 5AMECh. 3 - Prob. 1VCCh. 3 - Prob. 2VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- 1. The overall average on a process you are attempting to monitor is 55.0 units. The process population standard deviation is 1.84. Sample size is given to be 16. a) Determine the 3-sigma x-chart control limits. Upper Control Limit (UCLx)=56.3856.38 units (round your response to two decimal places). Lower Control Limit (LCLx)=53.6253.62 units (round your response to two decimal places). b) Now determine the 2-sigma x-chart control limits. Upper Control Limit (UCLx)=? units (round your response to two decimal places). 2. Sample Size, n Mean Factor, A2 Upper Range, D4 Lower Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0 5 0.577 2.115 0 6 0.483 2.004 0 7 0.419 1.924 0.076 8 0.373 1.864 0.136 9 0.337 1.816 0.184 10 0.308 1.777 0.223 12 0.266 1.716 0.284 Thirty-five samples of size 7 each were taken from a…arrow_forwardManagement at Webster Chemical Company is concerned as to whether caulking tubes are being properly capped. If a significant proportion of the tubes are not being sealed, Webster is placing its customers in a messy situation. Tubes are packaged in large boxes of 135. Several boxes are inspected, and the following numbers of leaking tubes are found: View an example Sample 1 2 3 Get more help. 4 Tubes 7 7 8 5 1 5 6 7 Calculate p-chart three-sigma control limits to assess whether the capping process is in statistical control. The UCL, equals 1 Sample 8 8 9 10 11 12 13 14 Tubes 7 2 4 8 6 9 MacBook Pro 3 Sample 15 16 17 18 19 20 Total Tubes 8 3 3 5 and the LCL equals (Enter your responses rounded to three decimal places. If your answer for LCL, is negative, enter this value as 0.) 3 6 104 Clear all Check answer Oarrow_forwardCan someone please explain how to find upper and lower limits using Excel? I am trying to answer this question: The overall average on a process you are attempting to monitor is 50.0 units. The process population standard deviation is 1.84 Sample size is given to be 4.a) Determine the 3-sigma x-chart control limits. Upper Control Limit (UCL) = ____units (round your response to two decimal places).arrow_forward
- Conduct brief research on four charts that are, or can be used in how each one can be used in the healthcare profession and why they would add value to the anaysis of a process outcome and provide data to guide process improvements The charts are: Run Chart Gantt Chart Pareto Chart Control Chart Demonstrate your skills in conducting an analysis of these charts. Please provide an explanation of the charts and identify how each one can be used in your field and why they would add value to the analysis of a process outcome and provide data to guide process improvements.arrow_forwardFactors for Computing Control Chart Limits (3 sigma) Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: Day Mean x (mm) Range R (mm) 1 156.9 4.2 2 153.2 4.6 3 153.6 4.1 4 155.5 5.0 5 156.6 4.5 Part 4 c) What are the (UCLx) and (LCLx) using 3-sigma? (UCLx) = mm (round your response to two decimal places). (LCLx) = mmarrow_forwardThirty-five samples of size 7 each were taken from a fertilizer-bag-filling machine at Panos Kouvelis Lifelong Lawn Ltd. The results were: Overall mean = 54.75 lb.; Average range R = 1.78 lb. a) For the given sample size, the control limits for 3-sigma x chart are: Upper Control Limit (UCL) = lb. (round your response to three decimal places).arrow_forward
- 1. The data shown in Table 1 are x and R values for 20 samples of size n= 5 taken from a process producing bearings. The measurements are made on the inside diameter of the bearing, with only the last three decimals recorded (i.e., 31.6 should be 0.50316). Please show all your work for full credit. (a) Set up x and R charts on this process. Does the process seem to be in statistical control? If necessary, revise the trial control limits. (b) Assume that diameter is normally distributed. Estimate the process standard deviation. Sample R Sample R 1 31.6 4 11 29.8 4 33.0 3 12 34.0 4 35.0 4 13 33.0 10 4 32.2 4 14 34.8 4 5 33.8 38.4 31.6 15 35.6 7 3 16 30.8 7 4 17 33.0 5 8 36.8 10 18 31.6 3 9. 35.0 15 19 28.2 9 10 34.0 6 20 33.8 Table 1: Bearing Diameter Dataarrow_forwardAt Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its lengthis between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49inches and a standard deviation of 0.014 inches. A) Is the process capable of meeting specifications? B) Does the process meet specifications?arrow_forwardThe smallest defect in a computer chip will render the entire chip worthless. Therefore, tight quality control measures must be established to monitor these chips. In the past, the percent defective at Chieh Lee's Computer Chips has been 1.5%. The sample size is 1,000. Determine upper and lower control chart limits for these computer chips. Use z = 3. Upper Control Limit (UCL) = (round your response to four decimal places). Lower Control Limit (LCLp) = (round your response to four decimal places).arrow_forward
- The overall average on a process you are attempting to monitor is 55.0 units. The process population standard deviation is 1.84. Sample size is given to be 16. a) Determine the 3-sigma x-chart control limits. Upper Control Limit (UCLx)=nothing units (round your response to two decimal places).arrow_forwardMcDaniel Shipyards wants to develop control charts to assess the quality of its steel plate. They take ten sheets of 1" steel plate and compute the number of cosmetic flaws on each roll. Each sheet is 20' by 100'. Based on the following data, develop limits for the control chart, plot the control chart, and determine whether the process is in control. Sheet Number of flaws 1 1 2 1 3 2 4 0 5 1 6 5 7 0 8 2 9 0 10 2arrow_forwardplease answer in 30 mins.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.