Concept explainers
- a. Draw the Lewis structure for methanol (wood alcohol), H3COH.
- b. Based on this structure, predict the H–C–H bond angle. Explain your reasoning.
- c. Based on this structure, predict the H–O–C bond angle. Explain your reasoning.
(a)
Interpretation:
The Lewis structure for methanol has to be drawn.
Concept Introduction:
Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds.
The chemical bonding present in covalently bonded molecules and in coordination compounds are represented using Lewis structures.
It is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.
Sometimes the chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance.
All the possible resonance structures are imaginary whereas the resonance hybrid is real.
These structures will differ only in the arrangement of the electrons not in the relative position of the atomic nuclei.
Lewis structure for any molecule is drawn by using the following steps,
First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined
The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.
Finally, the electrons which got after subtractions have to be equally distributed such that each atom contains eight electrons in its valence shell.
Molecular geometry is the shape of a molecule predicted by considering only bond pair of electrons.
Geometry of different type of molecules with respect to the number of electron pairs are mentioned below,
Explanation of Solution
The Lewis electron dot structure for given molecules are determined by first drawing the skeletal structure for the given molecules, then the total number of valence electrons for all atoms present in the molecules are determined.
The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.
Finally, the electrons which got after subtractions have to be equally distributed considering each atom contains eight electrons in its valence shell.
The given moleucle is
Thus, the Lewis structure of given compound is,
(b)
Interpretation:
The bond angle value in
Concept Introduction:
Molecular geometry is the shape of a molecule predicted by considering only bond pair of electrons.
Geometry of different type of molecules with respect to the number of electron pairs are mentioned below,
Explanation of Solution
Lewis structure for the given compound Methanol is,
Here, the carbon atom does not have lone pair of electrons and the geometry around the carbon atom is tetrahedral, thus the bond angle in between
(c)
Interpretation:
The bond angle value in
Concept Introduction:
Molecular geometry is the shape of a molecule predicted by considering only bond pair of electrons.
Geometry of different type of molecules with respect to the number of electron pairs are mentioned below,
Explanation of Solution
Lewis structure for the given compound Methanol is,
Here in
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry in Context
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Biology: Life on Earth (11th Edition)
General, Organic, and Biological Chemistry - 4th edition
Organic Chemistry
Fundamentals Of Thermodynamics
Organic Chemistry (8th Edition)
- Don't used hand raitingarrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardPart II. Given two isomers: 2-methylpentane (A) and 2,2-dimethyl butane (B) answer the following: (a) match structures of isomers given their mass spectra below (spectra A and spectra B) (b) Draw the fragments given the following prominent peaks from each spectrum: Spectra A m/2 =43 and 1/2-57 spectra B m/2 = 43 (c) why is 1/2=57 peak in spectrum A more intense compared to the same peak in spectrum B. Relative abundance Relative abundance 100 A 50 29 29 0 10 -0 -0 100 B 50 720 30 41 43 57 71 4-0 40 50 60 70 m/z 43 57 8-0 m/z = 86 M 90 100 71 m/z = 86 M -O 0 10 20 30 40 50 60 70 80 -88 m/z 90 100arrow_forward
- Part IV. C6H5 CH2CH2OH is an aromatic compound which was subjected to Electron Ionization - mass spectrometry (El-MS) analysis. Prominent m/2 values: m/2 = 104 and m/2 = 9) was obtained. Draw the structures of these fragments.arrow_forwardFor each reaction shown below follow the curved arrows to complete each equationby showing the structure of the products. Identify the acid, the base, the conjugated acid andconjugated base. Consutl the pKa table and choose the direciton theequilibrium goes. However show the curved arrows. Please explain if possible.arrow_forwardA molecule shows peaks at 1379, 1327, 1249, 739 cm-1. Draw a diagram of the energy levels for such a molecule. Draw arrows for the possible transitions that could occur for the molecule. In the diagram imagine exciting an electron, what are its various options for getting back to the ground state? What process would promote radiation less decay? What do you expect for the lifetime of an electron in the T1 state? Why is phosphorescence emission weak in most substances? What could you do to a sample to enhance the likelihood that phosphorescence would occur over radiationless decay?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning