A structure for lithium aluminum hydride should be determined. Concept Introduction: During the formation of a compound each atom tends to lose, gain or share enough electrons to achieve an electronic configuration having eight valence electrons. This rule is also known as octet rule. The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule. Bond angles in the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model. According to this model, the valence electrons of an atom are involved in the formation of single, double or triple bond. The valence electrons can also be unshared and exist as lone pair on atoms. The combination forms a negatively charged region of electron density around a nucleus. Since, like charges do not attract, the region of electron density around a nucleus spread out so that each atom is as far away from each other at different angles.
A structure for lithium aluminum hydride should be determined. Concept Introduction: During the formation of a compound each atom tends to lose, gain or share enough electrons to achieve an electronic configuration having eight valence electrons. This rule is also known as octet rule. The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule. Bond angles in the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model. According to this model, the valence electrons of an atom are involved in the formation of single, double or triple bond. The valence electrons can also be unshared and exist as lone pair on atoms. The combination forms a negatively charged region of electron density around a nucleus. Since, like charges do not attract, the region of electron density around a nucleus spread out so that each atom is as far away from each other at different angles.
Solution Summary: The author explains that a structure for lithium aluminum hydride should be determined by using the valence shell electron pair repulsion model.
A structure for lithium aluminum hydride should be determined.
Concept Introduction:
During the formation of a compound each atom tends to lose, gain or share enough electrons to achieve an electronic configuration having eight valence electrons. This rule is also known as octet rule. The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule. Bond angles in the molecules can be predicted by using valence shell electron pair repulsion (VSEPR) model. According to this model, the valence electrons of an atom are involved in the formation of single, double or triple bond. The valence electrons can also be unshared and exist as lone pair on atoms. The combination forms a negatively charged region of electron density around a nucleus. Since, like charges do not attract, the region of electron density around a nucleus spread out so that each atom is as far away from each other at different angles.
Draw the product of the reaction shown below. Ignore small byproducts that would evaporate please
Poly(ethylene adipate) is a biodegradable polyester (shown below). Identify the type of polymerization process used in the production of this polymer.
Polymers may be composed of thousands of monomers. draw two repeat units(dimer) of the polymer formed in this reaction. assume there are hydrogen atoms on the two ends of the dimer. ignore inorganic byproducts please
Chapter 3 Solutions
Introduction To General, Organic, And Biochemistry