Concept explainers
Define the terms wafer, chip, die, device, integrated circuit, line width, registration, surface mount, accelerated-life testing, and yield.
Define the terms wafer, chip, die, device, integrated circuit,line width, registration, surface mount, accelerated-lifetesting, and yield.
Explanation of Solution
Wafer fabrication:
Wafer fabrication can be used to make completely electrical or photonic circuits by repeating chronological processes. Some of the examples of components that are produced using this technique are radio frequency (RF) amplifiers, LEDs, optical computer components, and CPUs for computers. This technique is responsible for making structures that are required for electrical activity.
Chip:
A chip is a semiconducting material of small dimensions that is used as a base to fabricate a circuit. Chips that are manufactured now have varied dimensions ranging from 0.5mm×0.5mm to 50mm×50 mm in rare cases. With newer technologies, it is possible to create chips with density of around 10 million devices per chip and this is known as very large scale integration (VLSI).
Die:
In the perspective of integrated circuits, a die is a block that is made using semiconducting material and the functional circuit is fabricated over it. Generally, integrated circuits are produced using processes like photolithography. It is a mass production setup where they are made on a single wafer of semiconductor like electronic-grade silicon (EGS) or GaAa.
Device fabrication:
Device fabrication is used to manufacture integrated circuits used in electrical and electronic devices. There are several steps involved that need to be carried out in a chronological order. These steps include photolithography and other chemical processes. It uses a pure semiconducting material like silicon as the wafer over which the whole electronic circuit is fabricated. Other semiconductor compounds are also used depending on the applications of the device.
Integrated circuit (IC):
Integrated circuit is a wafer that is made from semiconductor material and several other components like resistors, capacitors and transistors are fabricated over it. It is also known as a chip or a microchip in general terms. It can be used as an amplifier, oscillator, timer, counter, computer memory, or even a microprocessor. Based on its desired application, an IC can be categorized into either a linear (analog) IC or a digital IC.
Line width:
Line width is the tiniest feature that can be imprinted on the surface of a silicon during lithography. It is also called as the critical dimension (CD). With the increasing circuit density, there has been decrease in the size of devices. They have become very small and 32nm is the feasible critical dimension that can be made commercially. Work has been going on to achieve a CD of 16nm or smaller.
Registration:
In the registration step, the reticle should be placed properly according to the previous layer on the wafer. After it is properly aligned, it can be placed under UV radiation. After exposure to UV, it is developed and the exposed photoresist is removed from the wafer.
Surface-mount technology (SMT):
Surface mount technology is a technique to create electronic circuits. In this technique, a PCB (printed circuit board) is taken and the components are directly mounted or placed over it. This produces a surface mount device (SMD). This technology has replaced the other technology used for fitting components which is the through-hole technology. In this technology, the components are fitted into the holes of the board using wire leads. In a single board, both these technologies can be used depending on the components. For some components, SMT is not possible like in case of large transformers and heat-sink power semiconductors.
Accelerated life testing:
Accelerated life testing is used to test a component to identify its faults and potential failure modes in small time duration. The component is tested against extreme conditions of parameters like stress, strain, temperatures, voltage, vibration rate, pressure etc. The results of these tests can be analyzed by engineers and they can predict the service life of a product. They can also give predictions about the required maintenance intervals for the same.
Yield:
Some of the important points to consider in the process of microelectronic fabrication are Yield Models, Defect Size Distribution, Defectivity, Redundant Vias, Yield Models, Poisson Model, Seed’s Model, Murphy Model, and Gamma Model.
Want to see more full solutions like this?
Chapter 28 Solutions
Manufacturing Engineering & Technology
- The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is theavailable power in the line?arrow_forwardQ For the following plan of building foundation, Determine immediate settlement at points (A) and (B) knowing that: E,-25MPa, u=0.3, Depth of foundation (D) =1m, Depth of layer below base level of foundation (H)=10m. 3m 2m 100kPa A 2m 150kPa 5m 200kPa Barrow_forwardGiven the following data for crack rocker mechanism. If θ2 = 4π/3 and ω2 = 1 rad/s, Determine all possible values of ω4 and ω3 analytically. The lengths of links are a = 2, b = 8, c = 7 and d = 9 in cm.arrow_forward
- Q6] (20 Marks) Select the most suitable choice for the following statements: modo digi -1A 10 af5 1 -The copper-based alloy which is responded to age hardening is a) copper-nickel b) aluminum bronze c) copper - beryllium d) brass besincaluy 2- Highly elastic polymers may experience elongations to greater than.... b) 500% bromsia-P c) 1000%. d) 1200% 15m or -2 a)100% 3- The cooling rate of quenching the steel in saltwater will be ......the cooling rate of quenching ir c) faster than sold) none of them a) slower than 4- Adding of a) Cr b) the same as ...... Will lead to stabilize the b) Mo 10 austenite in steel. c) Nimble avolls 1d) Sized loloin nl 5- The adjacent linear chains of crosslinked polymers are joined one to another at various positic DIR... by.........bonds c) covalent noisqo gd) ionic lg 120M 6- For the ceramic with coordination number 6 the cation to anion radius ratio will be a) Van der Waals a) 0.155-0.225 a) linear b) hydrogen (b) 0.225-0.414 c) 0.414 0.732 ..polymers.…arrow_forwardExamine Notes: Attempt Six Questions Only. rever necessa , Q1] (20 Marks) Answer with true (T) or false (F), corrects the wrong phrases, and gives sho reasons for correct and corrected statements: 1- High chromium irons are basically grey cast irons alloyed with 12 to 30 % Cr. yous board-19qgo orT-1 2- The drawbacks of Al- Li alloys are their high young modulus and high density.&M 0) (0 3- Vulcanized rubbers are classified under thermoplastic polymers. 4- Diamond is a stable carbon polymorph at room temperature and atmospheric pressure. ( 5- The metallic ions of ceramic are called anions, and they are positively charged. yldgiH-S 69001(6arrow_forwardH.W 5.4 Calculate the load that will make point A move to the left by 6mm, E-228GPa. The diameters of the rods are as shown in fig. below. 2P- PA 50mm B 200mm 2P 0.9m 1.3marrow_forward
- d₁ = = Two solid cylindrical road AB and BC are welded together at B and loaded as shown. Knowing that 30mm (for AB) and d₂ 50mm (for BC), find the average normal stress in each road and the total deformation of road AB and BC. E=220GPa H.W 5.3 60kN A For the previous example calculate the value of force P so that the point A will not move, and what is the total length of road AB at that force? P◄ A 125kN 125kN 0.9m 125kN 125kN 0.9m B B 1.3m 1.3marrow_forwardClass: B Calculate the load that will make point A move to the left by 6mm, E-228GPa The cross sections of the rods are as shown in fig. below. 183 P- Solution 1.418mm 200mm 80mm 3P- 18.3 A 080mm B 200mm 3P- 0.9m إعدادات العرض 1.3m 4.061mmarrow_forwardH.W6 Determine the largest weight W that can be supported by two wires shown in Fig. P109. The stress in either wire is not to exceed 30 ksi. The cross- sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively. 50° 30° Warrow_forward
- Find equation of motion and natural frequency for the system shown in fig. by energy method. H.W2// For the system Fig below find 1-F.B.D 2-Eq.of motion 8wn 4-0 (5) m. Jo marrow_forward2. Read the following Vernier caliper measurements. (The scales have been enlarged for easier reading.) The Vernier caliper is calibrated in metric units. (a) 0 1 2 3 4 5 سلسلسله (b) 1 2 3 4 5 6 سلسل (c) 1 23456 (d) 1 2 3 4 5 6 سلسلسarrow_forwardExplain why on the interval 0<x<1000 mm and 1000<x<2000mm, Mt is equal to positive 160 Nm, but at x= 0mm and x=1000mm Mt is equal to -160 Nm (negative value!). What is the reason for the sign change of Mt?arrow_forward
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning