General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 26, Problem 26.46EP

(a)

Interpretation Introduction

Interpretation: To characterize oxaloacetate as a possible reactant, product, or enzyme involved in transamination, oxidative deamination, or both transamination and oxidative deamination.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. It occurs mainly in kidney and liver mitochondria.

A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

(a)

Expert Solution
Check Mark

Answer to Problem 26.46EP

Oxaloacetate can function as a product both in transamination reaction oxidative deamination reactions.

Explanation of Solution

Oxaloacetate is a keto acid. In both transamination and oxidative deamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid takes place. The new keto acid formed has a carbon skeleton similar to the carbon skeleton of the reacting amino acid.

Oxaloacetate is a corresponding keto acid of aspartate. Both of them have the same carbon skeleton. Aspartate gives oxaloacetate product in both transamination and oxidative deamination reaction.

(b)

Interpretation Introduction

Interpretation: To characterize aspartate as a possible reactant, product, or enzyme involved in transamination, oxidative deamination, or both transamination and oxidative deamination.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. It occurs mainly in kidney and liver mitochondria.

A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

(b)

Expert Solution
Check Mark

Answer to Problem 26.46EP

Aspartate acts as a reactant in transamination reaction.

Explanation of Solution

In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid takes place. The reactant in transamination reaction is an amino acid.

Aspartate is an α-amino acid thus acts as a reactant in transamination reaction to give corresponding keto acid oxaloacetate.

(c)

Interpretation Introduction

Interpretation: To characterize glutamate aminotransferase as a possible reactant, product, or enzyme involved in transamination, oxidative deamination, or both transamination and oxidative deamination.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. It occurs mainly in kidney and liver mitochondria.

A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

(c)

Expert Solution
Check Mark

Answer to Problem 26.46EP

Glutamate aminotransferase is the enzyme involved in the transamination reaction of glutamate to give α-ketoglutarate.

Explanation of Solution

Aminotransferases are enzymes used for transamination reaction. These catalyze the interchange of an amino group from an α-amino acid with a keto group of an α-keto acid. Aminotransferase enzyme involved in the transfer of an amino group of glutamate amino acid is named as glutamate aminotransferase. Transamination reaction of glutamate requires Glutamate aminotransferase enzyme.

(d)

Interpretation Introduction

Interpretation: To characterize H2O as a possible reactant, product, or enzyme involved in transamination, oxidative deamination, or both transamination and oxidative deamination.

Concept introduction: Transamination reaction is a biochemical reaction that involves the transfer of an amino group. In transamination reaction exchange of an amino group from an α-amino acid with a keto group of α-keto acid. There occurs no net loss or gain of amino acid in transamination reaction.

A biochemical reaction in which an α-amino acid is converted into α-keto acid along with the release of an ammonium ion is known as oxidative deamination reaction. It occurs mainly in kidney and liver mitochondria.

A general oxidative deamination reaction is as follows:

α-amino acid+NAD++H2Oα-keto acid+NH4++NADH+H+

(d)

Expert Solution
Check Mark

Answer to Problem 26.46EP

Water is one of the reactants in oxidative deamination reaction of glutamate.

Explanation of Solution

Glutamate is an α-amino acid thus upon oxidative deamination gives corresponding keto acid, an ammonium ion, NADH and H+. The reaction is as follows:

General, Organic, and Biological Chemistry, Chapter 26, Problem 26.46EP

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 26 Solutions

General, Organic, and Biological Chemistry

Ch. 26.3 - Prob. 4QQCh. 26.3 - Prob. 5QQCh. 26.3 - Most aminotransferases are specific for the keto...Ch. 26.4 - Which of the following statements concerning the...Ch. 26.4 - Prob. 2QQCh. 26.4 - The two fuels for the urea cycle are a. carbamoyl...Ch. 26.4 - Prob. 4QQCh. 26.4 - Prob. 5QQCh. 26.4 - Prob. 6QQCh. 26.5 - Which of the following statements concerning the...Ch. 26.5 - Prob. 2QQCh. 26.5 - Prob. 3QQCh. 26.5 - Prob. 4QQCh. 26.6 - Prob. 1QQCh. 26.6 - How many of the standard amino acids are...Ch. 26.6 - The simplest pathways for amino acid biosynthesis...Ch. 26.7 - Prob. 1QQCh. 26.7 - Which of the following statements concerning the...Ch. 26.7 - Prob. 3QQCh. 26.7 - In the degradation of heme, the iron atom present...Ch. 26.8 - In degradation of the sulfur-containing amino acid...Ch. 26.8 - Prob. 2QQCh. 26.8 - Prob. 3QQCh. 26.8 - Prob. 4QQCh. 26.9 - Prob. 1QQCh. 26.9 - Prob. 2QQCh. 26.9 - Prob. 3QQCh. 26.10 - Prob. 1QQCh. 26.10 - Prob. 2QQCh. 26.10 - Prob. 3QQCh. 26 - Prob. 26.1EPCh. 26 - Indicate whether each of the following aspects of...Ch. 26 - Indicate whether each of the following pairings of...Ch. 26 - Indicate whether each of the following pairings of...Ch. 26 - Indicate whether each of the following statements...Ch. 26 - Prob. 26.6EPCh. 26 - Prob. 26.7EPCh. 26 - Prob. 26.8EPCh. 26 - Prob. 26.9EPCh. 26 - Prob. 26.10EPCh. 26 - Prob. 26.11EPCh. 26 - Prob. 26.12EPCh. 26 - Prob. 26.13EPCh. 26 - Prob. 26.14EPCh. 26 - Indicate whether each of the following situations...Ch. 26 - Indicate whether each of the following situations...Ch. 26 - Prob. 26.17EPCh. 26 - Prob. 26.18EPCh. 26 - Prob. 26.19EPCh. 26 - Prob. 26.20EPCh. 26 - Prob. 26.21EPCh. 26 - Prob. 26.22EPCh. 26 - Prob. 26.23EPCh. 26 - Prob. 26.24EPCh. 26 - Prob. 26.25EPCh. 26 - Prob. 26.26EPCh. 26 - Prob. 26.27EPCh. 26 - Prob. 26.28EPCh. 26 - Prob. 26.29EPCh. 26 - Prob. 26.30EPCh. 26 - Prob. 26.31EPCh. 26 - Prob. 26.32EPCh. 26 - Prob. 26.33EPCh. 26 - Prob. 26.34EPCh. 26 - Prob. 26.35EPCh. 26 - Prob. 26.36EPCh. 26 - Prob. 26.37EPCh. 26 - Prob. 26.38EPCh. 26 - Prob. 26.39EPCh. 26 - Prob. 26.40EPCh. 26 - Prob. 26.41EPCh. 26 - Prob. 26.42EPCh. 26 - Prob. 26.43EPCh. 26 - Draw the structure of the -keto acid produced from...Ch. 26 - Prob. 26.45EPCh. 26 - Prob. 26.46EPCh. 26 - Prob. 26.47EPCh. 26 - Prob. 26.48EPCh. 26 - Prob. 26.49EPCh. 26 - Prob. 26.50EPCh. 26 - Prob. 26.51EPCh. 26 - Prob. 26.52EPCh. 26 - Prob. 26.53EPCh. 26 - Prob. 26.54EPCh. 26 - Prob. 26.55EPCh. 26 - Prob. 26.56EPCh. 26 - Prob. 26.57EPCh. 26 - Prob. 26.58EPCh. 26 - Prob. 26.59EPCh. 26 - Prob. 26.60EPCh. 26 - Prob. 26.61EPCh. 26 - Prob. 26.62EPCh. 26 - Prob. 26.63EPCh. 26 - Prob. 26.64EPCh. 26 - Prob. 26.65EPCh. 26 - Prob. 26.66EPCh. 26 - Prob. 26.67EPCh. 26 - Prob. 26.68EPCh. 26 - Prob. 26.69EPCh. 26 - Prob. 26.70EPCh. 26 - Prob. 26.71EPCh. 26 - Prob. 26.72EPCh. 26 - Prob. 26.73EPCh. 26 - Prob. 26.74EPCh. 26 - Prob. 26.75EPCh. 26 - Prob. 26.76EPCh. 26 - Prob. 26.77EPCh. 26 - Prob. 26.78EPCh. 26 - Prob. 26.79EPCh. 26 - Prob. 26.80EPCh. 26 - Prob. 26.81EPCh. 26 - Prob. 26.82EPCh. 26 - Prob. 26.83EPCh. 26 - Prob. 26.84EPCh. 26 - Prob. 26.85EPCh. 26 - Prob. 26.86EPCh. 26 - Prob. 26.87EPCh. 26 - Prob. 26.88EPCh. 26 - Prob. 26.89EPCh. 26 - Prob. 26.90EPCh. 26 - Prob. 26.91EPCh. 26 - Prob. 26.92EPCh. 26 - Prob. 26.93EPCh. 26 - Prob. 26.94EPCh. 26 - Prob. 26.95EPCh. 26 - Prob. 26.96EPCh. 26 - Prob. 26.97EPCh. 26 - Which bile pigment is responsible for the...Ch. 26 - Prob. 26.99EPCh. 26 - Prob. 26.100EPCh. 26 - Prob. 26.101EPCh. 26 - Prob. 26.102EPCh. 26 - Prob. 26.103EPCh. 26 - Prob. 26.104EPCh. 26 - Prob. 26.105EPCh. 26 - Prob. 26.106EPCh. 26 - Prob. 26.107EPCh. 26 - Prob. 26.108EPCh. 26 - Prob. 26.109EPCh. 26 - Prob. 26.110EPCh. 26 - Prob. 26.111EPCh. 26 - Prob. 26.112EPCh. 26 - Prob. 26.113EPCh. 26 - Prob. 26.114EPCh. 26 - Prob. 26.115EPCh. 26 - Prob. 26.116EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
DIGESTER-35 | VITAMINS AND THEIR RELATED COENZYMES| GPAT | NIPER | PHARMACIST| DI; Author: GPAT DISCUSSION CENTER;https://www.youtube.com/watch?v=CGrdNYmho0s;License: Standard YouTube License, CC-BY