PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 92P
To determine
The internal resistance of the galvanometer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A toy battery has an emf of 33.0 V. The terminal voltage of the battery is 15.50 V
when it is delivering 30.50 W of power to an external load resistor R. What is the
internal resistance ( in Q) of the battery? Round your answer to the nearest
thousandth of Q.
A heart pacemaker fires 67 times a minute. Each time it fires, a 35.0 nF capacitor is charged by a battery in series with a resistor to 0.682 of its full voltage. What is the resistance?
When the switch is open, the potential difference across the terminals of a battery is 20.0 V. When a current of 2.0 A flows, hte potential difference across the battery drops to 16 V. What is the internal resistance of the battery?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forwardPower P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forwardIn the circuit of Figure P18.22, the current I1 is 3.0 A and the values of and R are unknown. What are the currents I2 and I3? Figure P18.22arrow_forward
- For the network in Figure P18.60, show that the resistance between points a and b is Rab=2717. (Hint: Connect a battery with emf across points a and b and determine /I, where I is the current in the battery.) Figure P18.60arrow_forward(a) A defibrillator sends a 6.00-A current through the chest of a patient by applying a 10,000-V potential as in the figure below. What is the resistance of the path? (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. Discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance. (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: P=I2 RP = .)arrow_forwardA battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forward
- (a) During surgery, a current as small as 20.0A applied directly to the heart may cause ventricular fibrillation. If the resistance of the exposed heart is 300 what is the smallest voltage that poses thisdanger? (b) Does your answer imply that special electrical safetyprecautions are needed?arrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardA defibrillator sends a 6.75 A current through the chest of a patient by applying a 9500 V voltage as in the figure. What is the resistance of the path in kΩ?arrow_forward
- A battery has emf 30.0 V and internal resistance r. A 9.00 Ω resistor is connected to the terminals of the battery, and the voltage drop across the resistor is 27.0 V. What is the internal resistance of the battery?arrow_forwardPart of an MRI machine circuit board contains four resistors in series. The resistances are 10, 20, 30, and 4 Q. The machine is connected to a 60 V power source. 미 054 2113284 7113286 PEW J7 J9 IN U.9 DALE RESISTOR/599_[[IES 80480 650x 1 0013 R4 J3/J5 a. What is the total resistance on the board? b. Calculate the total current through the circuit? c. If the 1 Q resistor receives 1 A of current, how much power does it dissipate? d. If the 3Q resistor receives 3 A of current, how much power does it dissipate? e. How much power does the power source deliver to the circuit?arrow_forwardA careless person accidentally grasps the terminals of a 20.0-kV power supply (Do NOT do this!). The resistance of the path through his body is 9.5 kΩ. a. If the internal resistance of the power supply is 2000 Ω, what is the current in amperes, that passes through his body? b. What is the power, in watts, dissipated in his body? c. The power supply can be made safer by increasing its internal resistance. What should be this resistance, in megaohms, to reduce the maximum current the device can supply to the person grabbing it to 0.95 mA or less?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College