PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 25, Problem 12P
To determine
To Choose: The correct option.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an initially uncharged capacitor in an RC circuit. The resistance is 20,000 Ohms and the
capacitance is 500 x10• F. If the source potential being used to charge the capacitor is 15 V, how
long after charging begins will the power delivered to the resistor be 25 % of its maximum value?
A resistor with value 2-ohm is connected in series with a capacitor that has a capacitance rating of 1.5 F. If the capacitor is initially uncharged, (a) What is the time constant? and (b) What fraction of the final charge is on the plates at time t = 14 s?
(a) A 0.20-F capacitor is to be charged through a resistor so that it becomes 63 percent charged in 0.10 s. What should the resistance of the capacitor be? (b) What is the time constant if the capacitor is charged through a 20-MΩ resistor?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A capacitor with initial charge Q0 is connected across a resistor R at time t = 0. The separation between the plates of the capacitor changes as d = d0/(1 + t) for 0 t 1 s. Find an expression for the voltage drop across the capacitor as a function of time.arrow_forwardA capacitor of capacitance C = 2x 10^-6 is discharged through a resistor of resistance = 10^5 ohm. When will the energy stored in a capacitor reduce to one-third of its initial valuearrow_forwardThe figure below shows an electrical circuit consisting of nine resistors (all multiples of R=5.00) connected to an ideal 12V fem 3 source. (a) Calculate the equivalent resistance of the circuit and the power it dissipates. (b) Find the electrical current flowing through each resistor. (c) Calculate the potential difference and the power dissipated through each resistor. (d) Compare the powers dissipated by the entire circuit and each resistor.arrow_forward
- A certain capacitor, in series with a resistor, is being charged. At the end of 10 ms its charge is half the final value. The time constant for the process is about: 5.0 ms 6.9 ms 10 ms 14 ms 20 msarrow_forwardA copper wire of resistance R = 24 Q is connected to a source of voltage that increases with time as AV(t) = Vo(1 - e-at), where Vo = 130 V and a = 0.62 s1. P=Vo²/R (1-e¯at)2 Calculate the energy dissipated by the resistor in joules during the first t = 1.75 s.arrow_forwardA capacitor of capacitance C= 10 µF is connected to a resistance R = 2 2 and a battery of emf E= 5 V of negligible internal resistance. After 20 µs of completing the circuit, find C HH R WW E (a) power delivered by the battery (b) power dissipated as heat (c) rate of energy stored in the capacitorarrow_forward
- The potential difference across a charged capacitor is 16 V. The capacitor discharges through a fixed resistor. After a time equal to the time constant, the potential difference has reduced to V. The magnitude of V is:arrow_forwardA 2.00-nF capacitor with an initial charge of 5.69 µC is discharged through a 1.07-k resistor. (a) Calculate the current in the resistor 9.00 us after the resistor is connected across the terminals of the capacitor. (Let the positive direction of the current be define such that > 0.) dt X The current through the resistor is considered to be negative, so that I = dQ/dt. mA (b) What charge remains on the capacitor after 8.00 µs? .135 ✓ HC (c) What is the (magnitude of the) maximum current in the resistor? 2.66 ✔ Aarrow_forwardA 6.00 nF capacitor that is initially uncharged is connected in series with a 900 Q resistor and an emf source with & = 360V and negligible internal resistance. Just after the circuit is completed, what is the voltage drop across the resistor? O OV 144,V 360 V 216 V O 60.0 V 120 V 180 Varrow_forward
- A 20.70 V battery is used to supply current to a 25 k resistor. Assume the voltage drop across any wires used for connections is negligible. (a) What is the current (in mA) through the resistor? 8.28e-7 X mA (b) What is the power dissipated by the resistor (in mW)? 0.0 X mW (c) What is the power input from the battery (in mW), assuming all the electrical power is dissipated by the resistor? mW (d) What happens to the energy dissipated by the resistor? The energy dissipated by the resistor is converted to elastic potential energy. The energy dissipated by the resistor is converted to electric potential energy. The energy dissipated by the resistor is converted to heat. The energy dissipated by the resistor is converted to gravitational potential energy.arrow_forwardThe space between two conducting concentric spheres of radii a and b (a < b) is filled up with a homogeneous poorly conducting medium. The capacitance of such a system equals C. Find the resistivity of the medium if the potential difference between the spheres when they are disconnected from an external voltage, decreases-fold during the time interval Δt.arrow_forwardA capacitor with capacitance C = 5 µF is charged to a voltage V = 10V. It is then discharged through a resistor R=2 MQ. At what time after the start of the discharge process has the voltage across the capacitor fallen to 1V?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY