
(a)
The time constant for the charging of capacitor.
(a)

Answer to Problem 115P
The time constant for the charging of capacitor is
Explanation of Solution
Given:
The given values in the circuit are,
And,
Formula Used:
The expression for the time constant for charging the capacitor is given by,
Calculation:
The time constant for charging the capacitor is calculated as,
Conclusion:
Therefore, the time constant for the charging of capacitor is
(b)
The proof that the potential across switch increases from
(b)

Answer to Problem 115P
The proof that as the potential across switch increases from
Explanation of Solution
Given:
The given values in the circuit are,
And,
Formula Used:
The expression for the voltage across the charging capacitor is given by,
Now,
Let ,
Rewrite equation (I) as,
Expand the term
Equation (II) can be written as,
This is a linear function.
Conclusion:
Therefore, the proof that as the potential across switch increases from
(c)
The changed value of
(c)

Answer to Problem 115P
The changed value of
Explanation of Solution
Given:
The given values in the circuit are,
And,
Formula Used:
The expression for the potential across the capacitor is given by
Calculation:
The changed value of
Conclusion:
Therefore, the changed value of
(d)
The time elapse during the discharge of capacitor when the switch
(d)

Answer to Problem 115P
The time elapse during the discharge of capacitor when the switch
Explanation of Solution
Given:
The given values in the circuit are,
And,
Formula Used:
The expression for the potential difference across the capacitor is given by,
The expression for
Rewrite equation (III) as,
Calculation:
The time elapsed during the discharge of capacitor is calculated as,
Conclusion:
Therefore, the time elapse during the discharge of capacitor when the switch
(e)
The average rate at which the energy is delivered to resistor
(e)

Answer to Problem 115P
The average rate at which the energy is delivered to resistor
Explanation of Solution
Given:
The given values in the circuit are,
And,
Formula Used:
The expression for the rate at which energy is dissipated in
The current varies with time. So, integrate over time.
The expression for the rate at which energy is dissipated in the switch resistance is given by,
Calculation:
The value of
The value of
The rate at which energy is dissipated in the switch resistance is calculated as,
Conclusion:
Therefore, the average rate at which the energy is delivered to resistor
Want to see more full solutions like this?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





