
Concept explainers
The reason for the electric fields within the material of conductors can be discussed in the chapter when it is concluded that there is no electric field inside a conductor in electrostatic equilibrium.

Answer to Problem 1P
Electric field inside a conductor is zero only when there is electrostatic equilibrium. The electric field within the material of a conductor is not zero when the external electric field is time varying.
Explanation of Solution
Introduction: Net electric field within the material of a conductor is zero only under electrostatic conditions. This implies the electric field inside a conductor will be zero when the charges are stationary.
A conductor has free electrons. The free charge carriers will experience a force under the influence of an external electric field and they will accelerate. The accelerated motion of the charge carriers implies that the conductor is not in equilibrium. When the external electric field is time varying, there will be a net electric field inside the conductor up to a small depth. This is known as skin depth.
Conclusion:Thus, it is reasonable to discuss the electric field within the material of the conductor in the chapter since the net electric field inside the conductor is zero only under electrostatic conditions; not when the field is time varying.
Want to see more full solutions like this?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





