PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 37P
To determine
The time required for electrons leaving the negative terminal of the battery to reach the positive terminal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An isolated conducting sphere has a 10 cm radius. One wire carries a current of 1.000 002 0 A into it. Another wire carries a current of 1.000 000 0 A out of it. How long would it take for the sphere to increase in potential by 1000 V?
The current density in a wire is uniform and has magnitude 2.0 * 10^6 A/m2, the wire’s length is 5.0 m, and the density of conduction electrons is 8.49 *10^28 m ohm3. How long does an electron take (on the average) to travel the length of the wire?
Suppose you have a rod of pure silicon with a diameter of 2.79cm and a length of 20.6cm. These rods are often used in experiments, such as the Large Hadron Collider in France/Switzerland to detect high-energy particles, and they have a very high resistivity of 2300Ω⋅m.
What current, in amperes, flows through the rod when a potential difference of 1.23* 10^3 V is applied between its ends ?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Taking R = 1.00 k and = 250 V in Figure P21.49, determine the direction and magnitude of the current in the horizontal wire between a and e. Figure P21.49arrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forwardExplain why R=R0(1 + a?T) for the temperature variation of the resistance R of an object is not as accurate as P=P0(1 + a?T) which gives the temperature variation of resistivity P.arrow_forward
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardCopper has a charge density of 8.5 × 1028 electrons per m', and a resistivity of 1.7 x 10-8 N.m. The drift velocity of electrons in copper is 1.4 × 10¬4 m/s. Determine the voltage drop across 1.0m of copper wire.arrow_forwardWhale and Kanmuro are two islands located in the Chimera archipelago. These two are separated by a distance of 20 miles. A power link is to be established between them. The power link delivers a maximum power of 600 MW at full capacity with an operating voltage of 500 kV. Solve for the resistivity of the cable, assuming a conductor diameter of 1.5 cm. Express your answer in p0-m.arrow_forward
- Asap plzzarrow_forwardThe potential difference across the terminals of a battery is8.40 V when there is a current of 1.50 A in the battery from the negativeto the positive terminal. When the current is 3.50 A in the reverse direction,the potential difference becomes 10.20 V. What is the emf of the battery?arrow_forwardA current-carrying gold wire has a diameter of 0.94 mm. The electric field in the wire is 0.52 V/m. What is (a) the potential between two points in the wire 6.8-m apart, (b) the resistance of a 6.8-m length of this wire, and (c) the current carried by the wire. Assume the gold’s resistivity value to be 2.4 x 10 - 8 Ω-m.arrow_forward
- We have a copper conductor, length l = 1m and circular section of diameter d = 4mm a) Calculate the resistance of the conductor between its ends. b) If a current of 1 amp flows through said conductor: I) Calculate the drag speed of the electrons. II) calculate the number of electrons per second that cross the conductor section. Data: resistivity of copper PCu = 1.7 × 10-8 -8 ampere m: numerical density of charge carriers [nCu] = 8.5 × 1028 atoms m-3: resistivity of aluminum p Al = 2.8 × 10-8 ampere m elemental load = 1.6x10-19 Carrow_forwardAn aluminum rod with a square cross-section is 2.6 m long and 5.3 mm on edge. (a) What is the resistance between its ends? (b) What must be the diameter of a cylindrical copper rod of length 2.6 m if its resistance is to be the same as that of the aluminum rod? The resistivity of aluminum is 2.75 × 10-8 Ω·m and the resistivity of copper is 1.69 × 10-8 Ω·m.arrow_forwardA 0.70-mm-diameter copper wire carries a tiny current of 2.9 μA. The molar mass of copper is 63.5 g/mole and its density is 8900 kg/m3. NA=6.02×10^23 Estimate the electron drift velocity. Assume one free electron per atom.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY