
(a)
The battery current just after closing switch S.
(a)

Answer to Problem 103P
The battery current just after closing the switch S is
Explanation of Solution
Given:
The value of emf is
The value of capacitances are
Formula used:
Apply Kirchhoff’s rule in circuit just after switch is closed,
Here,
Calculation:
Initially, the capacitor is uncharged so,
From equation (1), the battery current just after closing switch S is calculated as,
Conclusion:
Therefore, the battery current just after closing the switch S is
(b)
The battery current a long time after closing the switch S.
(b)

Answer to Problem 103P
The battery current a long time after closing the switch S is
Explanation of Solution
Formula used:
Apply Kirchhoff’s rule in circuit a long time after switch is closed,
Here,
Calculation:
From equation (2), the battery current a long time after closing switch S is calculated as,
Conclusion:
Therefore, the battery current a long time after closing the switch S is
(c)
The current in
(c)

Answer to Problem 103P
The current in
Explanation of Solution
Formula used:
Apply Kirchhoff’s rule at j unction of resistor
Apply Kirchhoff’s rule in loop 1,
Apply Kirchhoff’s rule in loop containing resistor
Calculation:
Differentiate equation (4) with respect to time,
Differentiate equation (5) with respect to time,
From equation (3) and (7),
From equation (4),
From equation (8) and (9),
Let the solution of above differential equation is,
Differentiate equation (10) with respect to time,
From equation (8) and (11),
Equate coefficient of
And,
At
From equation (10),
From equation (10),
Substitute values in equation (13),
Conclusion:
Therefore, the current in
(d)
The charges on capacitors plates a long time after reopening the switch S.
(d)

Answer to Problem 103P
The charges on capacitors plates a long time after reopening the switch S is zero.
Explanation of Solution
Calculation:
If the switch S is reopened, then after long time there will not be any flow of current in the circuit. Thus,
The potential difference across
The charges on
Conclusion:
Therefore, the charges on capacitors plates a long time after reopening the switch S is zero.
Want to see more full solutions like this?
Chapter 25 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- 9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward1). Determine the equivalent capacitance of the combination shown when C = 12 pF. +11/20 2C C Carrow_forward3). When a capacitor has a charge of magnitude 80 μC on each plate the potential difference across the plates is 16 V. How much energy is stored in this capacitor when the potential difference across its plates is 42 V? a. 1.0 mJ b. 4.4 mJ c. 3.2 mJ d. 1.4 mJ e. 1.7 mJarrow_forward
- 5). A conductor of radius r, length & and resistivity p has resistance R. It is melted down and formed into a new conductor, also cylindrical, with one fourth the length of the original conductor. The resistance of the new conductor is a. 1 R 161 b. 1 R C. R d. 4R e. 16Rarrow_forward8). Determine the magnitude and sense (direction) of the current in the 10-Q2 resistor when I = 1.8 A. 30 V L 50 V 10 Ω 20 Ω a. 1.6 A right to left b. 1.6 A left to right C. 1.2 A right to left d. 1.2 A left to right e. 1.8 A left to right R PGarrow_forward7). Determine the current in the 10-V emf. 5.0 0 w 10 V 5.0 0 15 V 5.0 Ω a. 2.3 A b. 2.7 A c. 1.3 A d. 0.30 A e. 2.5 Aarrow_forward
- 4). What is the resistance of a wire made of a material with a resistivity of 3.2 is 2.5 m and its diameter is 0.50 mm? a. 0.16 Ω b. 0.10 2 C. c. 1.28 Ω d. 0.41 2 e. 0.81 2 108 m if its lengtharrow_forwardA flat circular coil with 135 turns, a radius of 2.28 x 10-2 m, and a resistance of 0.618 is exposed to an external magnetic field that is directed perpendicular to the plane of the coil. The magnitude of the external magnetic field is changing at a rate of AB/At = 0.615 T/s, thereby inducing a current in the coil. Find the magnitude of the magnetic field at the center of the coil that is produced by the induced current. Numberarrow_forwardplease solve the question attachedarrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone. Sketch the resulting complex wave form that results from the combination of the following two waves. Is this wave periodic or aperiodic? USE GRAPH PAPER!arrow_forwardRequired information A bungee jumper leaps from a bridge and undergoes a series of oscillations. Assume g = 9.78 m/s². If a 60.0-kg jumper uses a bungee cord that has an unstretched length of 30.1 m and she jumps from a height of 45.2 m above a river, coming to rest just a few centimeters above the water surface on the first downward descent, what is the period of the oscillations? Assume the bungee cord follows Hooke's law.arrow_forwardRequired information The leg bone (femur) breaks under a compressive force of about 6.50 × 104 N for a human and 12.3 × 104 N for a horse. The human femur has a compressive strength of 160 MPa, whereas the horse femur has a compressive strength of 140 MPa. What is the effective cross-sectional area of the femur in a horse? (Note: Since the center of the femur contains bone marrow, which has essentially no compressive strength, the effective cross-sectional area is about 80% of the total cross-sectional area.) cm2arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





