![Physics: Principles with Applications](https://www.bartleby.com/isbn_cover_images/9780130606204/9780130606204_largeCoverImage.gif)
Concept explainers
(a)
Minimum thickness needed in order to eliminate blue reflections for light at normal incidence.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 76GP
Minimum thickness is
Explanation of Solution
Given:
Refractive index,
Wavelength,
Formula used:
Minimum thickness can be given as:
Calculation:
Substituting the given values,
Conclusion:
The minimum thickness is
(b)
Minimum thickness needed in order to eliminate red reflections for light at normal incidence.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 76GP
The minimum thickness is
Explanation of Solution
Given:
Refractive index,
Wavelength,
Formula used:
Minimum thickness can be given as:
Calculation:
Substituting the given values,
Conclusion:
The minimum thickness is
Chapter 24 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry (7th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Brock Biology of Microorganisms (15th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- please solve and answer the question correctly. thank you!!arrow_forwardplease solve and answer the question correctly. thank you!! (hint in 2nd photo)arrow_forwardNewton's Laws of Motion - Please help with the first angle calculations of standard deviation and margin of error. I just need a model and I can figure out the other two angles. Thanks!arrow_forward
- 2. A battleship simultaneously fires two shells at enemy ships. If the shells follow the parabolic trajectories shown, which ship gets hit first? a. A b. both at the same time C. B d. need more information battleship Barrow_forwardA m₁ = 1.70-kg aluminum block and a m₂ = 8.00-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle 0 = 31.5°) as shown in the figure. (For aluminum on steel, μk k = 0.36.) Мк Aluminum m Copper = 0.47. For copper on steel, Steel m2 Ꮎ (a) the acceleration of the two blocks m/s² (b) the tension in the string Narrow_forwardWhile the 83.3 kg Dora Milaje is in equilibrium, the rope makes a 70.0˚ angle with the horizontal. Assuming the coefficient of friction between her shoes and the ship is 0.772 and her static friction is at its maximum value, what is the tension in the cable?arrow_forward
- Can someone help me asnwer this thank youarrow_forwardPlease solve and answer the problem correctly please. Be sure to give explanations on each step and write neatlyplease. Thank you!! ( preferably type the explantion, steps and solution please )arrow_forwardA square coil that has 17.5 cm on each side containing 17 loops lies flat on your desk as shown on this page. A uniform magnetic field of magnitude 4.60 × 10-ST points into this page. If a 8.50-A clockwise Current flows through the coil. ca) determine the torque on the coil. N.m (b) which edge of the coil rises up? choose one 。 Bottom отор and explain. O Right • None of these О Left.arrow_forward
- A circular loop of wire with a diameter of 13.0 cm is in the horizontal plane and carries of 1.70 A clockwise, as viewed from underneath. What is the magnitude magnetic field as the center of the loop? -T what is the direction of magnetic field at the center or down? please explain. of the loop? uparrow_forwardStarlord has a mass of 89.3 kg and Groot is pulling the bag with a force of 384. N at an angle of 35.0˚ as is shown in the figure below. What is the coefficient of kinetic friction if they are moving at a constant speed of 2.31 m/s?arrow_forwardEarly on in the video game Shadow of the Tomb Raider Lara Croft uses a winch to pull a heavy crate of stone up a 23.6° incline. If Lara causes the 66.0 kg crate to accelerate at 2.79 m/s2 up the ramp, what is the tension in the rope pulling the block? The coefficient of kinetic friction between the block and the ground is 0.503.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)