Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 16P
(II) An electric field of 4.80 × 105V/m is desired between two parallel plates, each of area 21.0 cm2 and separated by 0.250 cm of air. What charge must be on each plate?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:06
Students have asked these similar questions
(II) An electric field of 8.50 x 105 V/m is desired between two parallel plates, each of area 45.0 cm2 and separated by 2.45 mm of air. What charge must be on each plate?
(II) The electric field between two parallel square metal plates is 130 N/C. The plates are 0.85 m on a side and are separated by 3.0 cm. What is the charge on each plate (assume equal and opposite)? Neglect edge effects
(II) Determine the electric field É at the origin 0 in
Fig. 16–58 due to the two charges
at A and B.
y
|+26 µC
A
8.0 cm
-26 µC
B
8.0 cm
FIGURE 16-58
8.0 cm
Problem 33.
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 24.1 - Graphs for charge versus voltage are shown in Fig....Ch. 24.2 - Two circular plates of radius 5.0 cm are separated...Ch. 24.2 - What is the capacitance per unit length of a...Ch. 24.3 - Consider two identical capacitors C1 = C2 = 10 F....Ch. 24.5 - Return to the Chapter-Opening Question, page 628,...Ch. 24 - Suppose two nearby conductors carry the same...Ch. 24 - Suppose the separation of plates d in a...Ch. 24 - Suppose one of the plates of a parallel-plate...Ch. 24 - When a battery is connected to a capacitor, why do...Ch. 24 - Describe a sample method of measuring 0 using a...
Ch. 24 - Suppose three identical capacitors are connected...Ch. 24 - A large copper sheet of thickness is placed...Ch. 24 - The parallel plates of an isolated capacitor carry...Ch. 24 - How does the energy in a capacitor change if (a)...Ch. 24 - If the voltage across a capacitor is doubled, the...Ch. 24 - An isolated charged capacitor has horizontal...Ch. 24 - Suppose a battery remains connected to the...Ch. 24 - How does the energy stored in a capacitor change...Ch. 24 - For dielectrics consisting of polar molecules, how...Ch. 24 - A dielectric is pulled out from between the plates...Ch. 24 - We have seen that the capacitance C depends on the...Ch. 24 - What value might we assign to the dielectric...Ch. 24 - (I) The two plates of a capacitor hold +2800 C and...Ch. 24 - (I) How much charge flows from a 12.0-V battery...Ch. 24 - (I) The potential difference between two short...Ch. 24 - (I) The charge on a capacitor increases by 26 C...Ch. 24 - (II) A 7.7-F capacitor is charged by a 125-V...Ch. 24 - (II) An isolated capacitor C1 carries a charge Q0....Ch. 24 - (II) It takes 15 J of energy to move a 0.20-mC...Ch. 24 - (II) A 2.70-F capacitor is charged to 475 V and a...Ch. 24 - (II) Compact ultracapacitors with capacitance...Ch. 24 - (II) In a dynamic random access memory (DRAM)...Ch. 24 - (I) To make a 0.40-F capacitor, what area must the...Ch. 24 - (I) What is the capacitance per unit length (F/m)...Ch. 24 - (I) Determine the capacitance of the Earth,...Ch. 24 - (II) Use Gausss law to show that E=0 inside the...Ch. 24 - (II) Dry air will break down if the electric field...Ch. 24 - (II) An electric field of 4.80 105V/m is desired...Ch. 24 - (II) How strong is the electric field between the...Ch. 24 - (II) A large metal sheet of thickness is placed...Ch. 24 - (III) Small distances are commonly measured...Ch. 24 - (III) In an electrostatic air cleaner...Ch. 24 - (I) The capacitance of a portion of a circuit is...Ch. 24 - (I) (a) Six 3.8-F capacitors are connected in...Ch. 24 - (II) Given three capacitors, C1 = 2.0 F, C2 = 1.5...Ch. 24 - (II) Suppose three parallel-plate capacitors,...Ch. 24 - (II) An electric circuit was accidentally...Ch. 24 - (II) Three conducting plates, each of area A, are...Ch. 24 - (II) Consider three capacitors, of capacitance...Ch. 24 - (II) A 0.50-F and a 0.80-F capacitor are connected...Ch. 24 - (II) In Fig. 2423, suppose C1 = C2 = C3 = C4 = C....Ch. 24 - (II) Suppose in Fig. 2423 that C1 = C2 = C3 = 16.0...Ch. 24 - (II) The switch S in Mg. 2424 is connected...Ch. 24 - (II) (a) Determine the equivalent capacitance...Ch. 24 - FIGURE 2425 Problems 32 and 33. (II) Suppose in...Ch. 24 - (II) Two capacitors connected in parallel produce...Ch. 24 - (II) In the capacitance bridge shown m Fig. 2426,...Ch. 24 - (II) Two capacitors, C1 = 3200 pF and C2 = 1800...Ch. 24 - (II) (a) Determine the equivalent capacitance of...Ch. 24 - (II) In Fig. 2427, let C1 = 2.00 F, C2 = 3.00 F,...Ch. 24 - (III) Suppose one plate of a parallel-plate...Ch. 24 - (III) A voltage V is applied to the capacitor...Ch. 24 - (I) 2200 V is applied to a 2800-pF capacitor. How...Ch. 24 - (I) There is an electric field near the Earths...Ch. 24 - (I) How much energy is stored by the electric...Ch. 24 - (II) A parallel-plate capacitor has fixed charges...Ch. 24 - (II) In Fig. 2427, Let V = 10.0 V and C1 = C2 = C3...Ch. 24 - (II) How much energy must a 28-V battery expend to...Ch. 24 - (II) (a) Suppose the outer radius Ra of a...Ch. 24 - (II) A 2.2-F capacitor is charged by a 12.0-V...Ch. 24 - (II) How much work would be required to remove a...Ch. 24 - (II) (a) Show that each plate of a parallel-plate...Ch. 24 - (II) Show that the electrostatic energy stored in...Ch. 24 - (II) When two capacitors are connected in parallel...Ch. 24 - (II) For commonly used CMOS (complementary metal...Ch. 24 - (I) What is the capacitance of two square parallel...Ch. 24 - (II) Suppose the capacitor in Example 2411 remains...Ch. 24 - (II) How much energy would be stored in the...Ch. 24 - (II) In the DRAM computer chip of Problem 10, the...Ch. 24 - (II) A 3500-pF air-gap capacitor is connected to a...Ch. 24 - (II) Two different dielectrics each fill half the...Ch. 24 - (II) Two different dielectrics fill the space...Ch. 24 - (II) Repeat Problem 60 (Fig. 2431) but assume the...Ch. 24 - (II) Two identical capacitors are connected in...Ch. 24 - (III) A slab of width d and dielectric constant K...Ch. 24 - (III) The quantity of liquid (such as cryogenic...Ch. 24 - (II) Show that the capacitor in Example 2412 with...Ch. 24 - (II) Repeat Example 24-12 assuming the battery...Ch. 24 - (II) Using Example 2412 as a model, derive a...Ch. 24 - (II) In Example 2412 what percent of the stored...Ch. 24 - (III) The capacitor shown in Fig. 2434 is...Ch. 24 - (a) A general rule for estimating the capacitance...Ch. 24 - A cardiac defibrillator is used to shock a heart...Ch. 24 - A homemade capacitor is assembled by placing two...Ch. 24 - An uncharged capacitor is connected to a 34.0-V...Ch. 24 - It takes 18.5 J of energy to move a 13.0-mC charge...Ch. 24 - A huge 3.0-F capacitor has enough stored energy to...Ch. 24 - A coaxial cable, Fig. 2435, consists of an inner...Ch. 24 - The electric field between the plates of a...Ch. 24 - Capacitors can be used as electric charge...Ch. 24 - A parallel-plate capacitor is isolated with a...Ch. 24 - In lightning storms, the potential difference...Ch. 24 - A multilayer film capacitor has a maximum voltage...Ch. 24 - A 3.5 F capacitor is charged by a 12.4-V battery...Ch. 24 - The power supply for a pulsed nitrogen laser has a...Ch. 24 - A parallel-plate capacitor has square plates 12 cm...Ch. 24 - The variable capacitance of an old radio tuner...Ch. 24 - A high-voltage supply can be constructed from a...Ch. 24 - A 175-pF capacitor is connected in series with an...Ch. 24 - A parallel-plate capacitor with plate area 2.0 cm2...Ch. 24 - In the circuit shown in Fig. 2437. C1 = 1.0 F, C2...Ch. 24 - The long cylindrical capacitor shown in Fig. 2438...Ch. 24 - A parallel-plate capacitor has plate area A, plate...Ch. 24 - Consider the use of capacitors as memory cells. A...Ch. 24 - To get an idea how big a farad is, suppose you...Ch. 24 - A student wearing shoes with thin insulating soles...Ch. 24 - A parallel-plate capacitor with plate area A = 2.0...Ch. 24 - Let us try to estimate the maximum static...Ch. 24 - Paper has a dielectric constant K = 3.7 and a...Ch. 24 - (II) Six physics students were each given an air...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
8. Soles of hoots that are designed to protect workers from electric shock are rated to pass a maximum rms curr...
College Physics: A Strategic Approach (3rd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
What is the volume of one mole of air, at room temperature and 1 atm pressure?
An Introduction to Thermal Physics
A well-thrown ball is caught in a well-padded mitt. If the acceleration of the ball is 2.10104m/s2 , and 1.85 m...
University Physics Volume 1
Explain all answers clearly, using complete sentence and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (c) Calculate the electric field, E, at the origin for the three scenarios given. The magnitude 4760 of all charges is 3 C and the charges form squares with each side 1-m long. k = 8.99 x 10°Nm²/C². =arrow_forward(1) An object has a charge of -2.0 μC. How many electrons must me removed so that the charge becomes +3.0 μC?arrow_forward(II) The electric field midway between two equal but opposite point charges is 386 N/C and the distance between the charges is 16.0 cm. What is the magnitude of the charge on each?arrow_forward
- (II) A large electroscope is made with "leaves" that are 78-cm-long wires with tiny 21-g spheres at the ends. When charged, nearly all the charge resides on the spheres. If the wires each make a 26° angle with the vertical (Fig. 16–55), what total charge Q must have been applied to the electroscope? Ignore the mass of the wires. 26°126 78 cm 78 cm FIGURE 16–55 Problem 16.arrow_forward(II) Calculate the electric field at one corner of a square 1.22 m on a side if the other three corners are occupied by 3.25 x 10-6 C charges.arrow_forward(II) Two point charges, Q1 = -32 µC and Q2 = +45 µC, are separated by a distance of 12 cm. The electric field at the point P (see Fig. 16–57) is zero. How far from Qj is P? Q1 Q2 12 cm P -32 μC +45 µC FIGURE 16-57 Problem 32.arrow_forward
- (II) If a capacitor has opposite 4.2 µ C charges on the plates, and an electric field of 2.0 KV/mm is desired between the plates, what must each plate’s area be?arrow_forward(II) In Fig. 16–62, two objects, Og and O2, have charges +1.0 µC and – 2.0 µC, respectively, and a third object, O3, is electrically neutral. (a) What is the electric flux through the surface A1 that encloses all three objects? (b) What is the electric flux through the surface A, that encloses the third object only? A1 O3 0,•+1.0 µC A2 IGURE 16-62 02•-2.0 µC roblem 39.arrow_forward(c) d) 2R R. R. R. Two uniform line charges of = 4n C/m each are parallel to the z-axis at (0, 4)m and (0, -4)m. Magnitude of electric field at points (+4, 0, 0) is (a) 9 V/m (b) 18 V/m C4.5 V/m (d) 9/2 V/marrow_forward
- Do it asaparrow_forward(II) You are given two unknown point charges, Q1 and Q2 . At a point on the line joining them, one-third of the way from Q to Q2 , the electric field is zero (Fig. 16–59). What is the ratio Q1/Q2? E= 0 Qi 3 Q2 FIGURE 16–59 Problem 34. l-arrow_forward(I) Determine the magnitude and direction of the electricfield 21.7 cm directly above an isolated 33.0 x 10 -6 C chargearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY