Calculus Volume 1
17th Edition
ISBN: 9781938168024
Author: Strang, Gilbert
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.4, Problem 134E
For the following exercises, determine the point(s), if any, at which each function is discontinuous. Classify any discontinuity as jump, removable, infinite, or other.
134.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Already got wrong Chatgpt answer Plz don't use chat gpt
Will definitely upvote
No Chatgpt please will upvote
Already got wrong Chatgpt answer
Consider the initial value problem
mx" + cx' + kx = F(t),
x(0) = 0, x'(0) = 0
modeling the motion of a damped mass-spring system initially at rest and subjected to an
applied force F(t), where the unit of force is the Newton (N). Assume that m = = 2
kilograms, c = 8 kilograms per second, k 80 Newtons per meter, and F(t) = 20e¯*
=
Newtons.
Solve the initial value problem.
x(t) =
=
help (formulas)
Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0
t→∞
? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive
values of t.
For very large positive values of t,
x(t) ≈ x sp(t)
=
help (formulas)
Book: Section 2.6 of Notes on Diffy Qs
Chapter 2 Solutions
Calculus Volume 1
Ch. 2.1 - For the following exercises, points P(l, 2) and...Ch. 2.1 - For the following exercises, points P(l, 2) and...Ch. 2.1 - For the following exercises, points P(l, 2) and...Ch. 2.1 - For the following exercises, points P(l, 1) and...Ch. 2.1 - For the following exercises, points P(l, 1) and...Ch. 2.1 - For the following exercises, points P(l, 1) and...Ch. 2.1 - For the following exercises, points P(4, 2) and...Ch. 2.1 - For the following exercises, points P(4, 2) and...Ch. 2.1 - For the following exercises, points P(4, 2) and...Ch. 2.1 - For the following exercises, points P(l.5, 0) and...
Ch. 2.1 - For the following exercises, points P( 1.5, 0) and...Ch. 2.1 - For the following exercises, points P( 1.5, 0) and...Ch. 2.1 - For the following exercises, points P(-1, -1) and...Ch. 2.1 - For the following exercises, points P(-1,-1) and...Ch. 2.1 - For the following exercises, points P(-1, - 1) and...Ch. 2.1 - For the following exercises, the position function...Ch. 2.1 - For the following exercises, the position function...Ch. 2.1 - For the following exercises, consider a stone...Ch. 2.1 - For the following exercises, consider a stone...Ch. 2.1 - For the following exercises, consider a rocket...Ch. 2.1 - For the following exercises, consider a rocket...Ch. 2.1 - For the following exercises, consider an athlete...Ch. 2.1 - For the following exercises, consider an athlete...Ch. 2.1 - For the following exercises, consider the...Ch. 2.1 - For the following exercises, consider the function...Ch. 2.1 - For the following exercises, consider the function...Ch. 2.1 - For the following exercises, consider the...Ch. 2.1 - For the following exercises, consider the function...Ch. 2.1 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - For the following exercises, consider the function...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - [T] In the following exercises, set up a table of...Ch. 2.2 - In the following exercises, consider the graph of...Ch. 2.2 - In the following exercises, consider the graph of...Ch. 2.2 - In the following exercises, consider the graph of...Ch. 2.2 - In the following exercises, consider the graph of...Ch. 2.2 - In the following exercises, use the following...Ch. 2.2 - In the following exercises, use the following...Ch. 2.2 - In the following exercises, use the following...Ch. 2.2 - In the following exercises, use the following...Ch. 2.2 - In the following exercises, use the following...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, use the graph of the...Ch. 2.2 - In the following exercises, sketch the graph of a...Ch. 2.2 - In the following exercises, sketch the graph of a...Ch. 2.2 - In the following exercises, sketch the graph of a...Ch. 2.2 - In the following exercises, sketch the graph of a...Ch. 2.2 - In the following exercises, sketch the graph of a...Ch. 2.2 - Shock waves arise in many physical applications,...Ch. 2.2 - A track coach uses a camera with a fast shutter to...Ch. 2.3 - Some of the geometric formulas we take for granted...Ch. 2.3 - Some of the geometric formulas we take for granted...Ch. 2.3 - Some of the geometric formulas we take for granted...Ch. 2.3 - Some of the geometric formulas we take for granted...Ch. 2.3 - Some of the geometric formulas we take for granted...Ch. 2.3 - In the following exercises, use the limit Laws to...Ch. 2.3 - In the following exercises, use the limit laws to...Ch. 2.3 - In the following exercises, use the limit laws to...Ch. 2.3 - In the following exercises, use the limit laws to...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - ]In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, use direct...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - In the following exercises, assume that...Ch. 2.3 - [T] In the following exercises, use a calculator...Ch. 2.3 - [T] In the following exercises, use a calculator...Ch. 2.3 - [T] In the following exercises, use a calculator...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - yIn the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - In the following exercises, use the following...Ch. 2.3 - For the following problems, evaluate the limit...Ch. 2.3 - For the following problems, evaluate the limit...Ch. 2.3 - For the following problems, evaluate the limit...Ch. 2.3 - [T] In physics, the magnitude of an electric field...Ch. 2.3 - [T] The density of an object is given by its mass...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, determine the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - For the following exercises, decide if the...Ch. 2.4 - In the following exercises, find the value(s) of k...Ch. 2.4 - In the following exercises, find the value(s) of k...Ch. 2.4 - In the following exercises, find the value(s) of k...Ch. 2.4 - In the following exercises, find the value(s) of k...Ch. 2.4 - In the following exercises, find the value(s) of k...Ch. 2.4 - In the following exercises, use the Intermediate...Ch. 2.4 - In the following exercises, use the Intermediate...Ch. 2.4 - In the following exercises, use the Intermediate...Ch. 2.4 - In the following exercises, use the Intermediate...Ch. 2.4 - Consider the graph of the function y=f(x) shown in...Ch. 2.4 - Let f(x)={3x,x1x3,x1 . Sketch the graph of f. Is...Ch. 2.4 - Let f(x)=x41x21forx1,1 . a. Sketch the graph of f....Ch. 2.4 - Sketch the graph of the function y=f(x) with...Ch. 2.4 - Sketch the graph of the function y=f(x) with...Ch. 2.4 - In the following exercises, suppose y=f(x) is...Ch. 2.4 - In the following exercises, suppose y=f(x) is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - Determine whether each of the given statements is...Ch. 2.4 - [T] The following problems consider the scalar...Ch. 2.4 - [T] The following problems consider the scalar...Ch. 2.4 - [T] The following problems consider the scalar...Ch. 2.4 - [T] After a certain distance D has passed, the...Ch. 2.4 - As the rocket travels away from Earth’s surface,...Ch. 2.4 - wqProve the following functions are continuous...Ch. 2.4 - Prove the following functions are continuous...Ch. 2.4 - Prove the following functions are continuous...Ch. 2.5 - In the following exercises, write the appropriate ...Ch. 2.5 - In the following exercises, write the appropriate ...Ch. 2.5 - In the following exercises, write the appropriate ...Ch. 2.5 - In the following exercises, write the appropriate ...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - The following graph of the function f satisfies...Ch. 2.5 - [T] In the following exercises, use a graphing...Ch. 2.5 - [T] In the following exercises, use a graphing...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - In the following exercises, use the precise...Ch. 2.5 - An engineer is using a machine to cut a flat...Ch. 2.5 - Use the precise definition of limit to prove that...Ch. 2.5 - Using precise definitions of limits, prove that...Ch. 2.5 - Using precise definitions of limits, prove that...Ch. 2.5 - Using precise definitions of limits, prove that...Ch. 2.5 - Using the function from the previous exercise, use...Ch. 2.5 - limxa(f(x)g(x))=LMCh. 2.5 - limxa[cf(x)]=cL for any real constant c (Hint....Ch. 2.5 - ...Ch. 2 - wTrue or False. In the following exercises,...Ch. 2 - True or False. In the following exercises, justify...Ch. 2 - True or False. In the following exercises, justify...Ch. 2 - True or False. In the following exercises, justify...Ch. 2 - Using the graph, find each limit or explain why...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - wIn the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, evaluate the limit...Ch. 2 - In the following exercises, use the squeeze...Ch. 2 - In the following exercises, use the squeeze...Ch. 2 - In the following exercises, use the squeeze...Ch. 2 - In the following exercises, determine the value of...Ch. 2 - In the following exercises, determine the value of...Ch. 2 - In the following exercises, use the precise...Ch. 2 - In the following exercises, use the precise...Ch. 2 - A ball is thrown into the air and the vertical...Ch. 2 - A particle moving along a line has a displacement...Ch. 2 - From the previous exercises, estimate the...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Mathematical Connections Explain why a number and a numeral are considered different.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Twenty five people, consisting of 15 women and 10 men are lined up in a random order. Find the probability that...
A First Course in Probability (10th Edition)
TRY IT YOURSELF 1
Find the mean of the points scored by the 51 winning teams listed on page 39.
Elementary Statistics: Picturing the World (7th Edition)
Finding Complements. In Exercises 5-8, find the indicated complements.
7. Flying In a Harris survey, adults wer...
Elementary Statistics (13th Edition)
Another fishing story An angler hooks a trout and reels in his line at 4 in/s. Assume the tip of the fishing ro...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Similar questions
- Consider the initial value problem mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 100 cos(8t) Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 t→∞ ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t)≈ x sp(t) = help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem mx" cx' + kx F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 80 Newtons per meter, and F(t) = 20 sin(6t) kilograms, c = 8 kilograms per second, k = Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 0047 ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = ☐ help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the differential equation y' = - 4xy with initial condition y(0) = 1.9. Recall that Runge-Kutta method has the following formula for computing the next step, where h is the step size: f(xi, Yi) = fx i + (++) k1 = h k2 2 ¯‚ Yi + k₁ h h k3 = fxi 2 `, Yi + k₂· 2 k4 = f(xi+h, yikзh) i+1=i+h k12k22k3 + k4 Yi+1 Yi + h 6 Using Runge-Kutta step size h = 0.4: Estimate y(0.4) ≈ help (numbers) Estimate y(0.8) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forward
- Determine which differential equation corresponds to each phase diagram. You should be able to state briefly how you know your choices are correct. х x 4 4 4 4 3 3 3 3 2 2 2 2 dx ? ✰ dt = 1. = x² - 3x 1 1 1 1 ? ◇ 2. dx dt = x(x − 2) - 0 0 0 0 ? ◇ 3. dx dt = x(2 − x)² -1 -1 -1 -1 Q -2 -2 -2 dx ? ◇ 4. ༤་ dt = = 3x - x² -3 -3 -3 -3 x³- 4x = x²|x − 2| ? ◇ 5. ம் dx dt བི་ dx ? ◇ 6. dt ཝེ་ dx ? 7. dt ཝེ་ dx ? ◇ 8. ཝེ་ dt -4 -4 -4 -4 A B 0 D = = 2x = x² * x * * x * K 4 4 4 4 = 4x - x³ 3 3 3 • 3 Book: Section 1.6 of Notes on Diffy Qs dit for this problem 2 2 2 2 1 1 1 1 0 0 0 8 -1 -1 -1 -1 N 心 -2 -2 -3 -3 -3 -4 -4 -4 -4 E FL G Harrow_forwardDear expert Chatgpt gives wrong answer Plz don't use chat gptarrow_forwardAn improved method that is similar to Euler's method is what is usually called the Improved Euler's method. It works like this: Consider an equation y' = f(x, y). From (xn, Yn), our approximation to the solution of the differential equation at the n-th stage, we find the next stage by computing the x-step Xn+1 = xn +h, and then k1, the slope at (xn, Yn). The predicted new value of the solution . İs Zn+1 = Yn + h · k₁. Then we find the slope at the predicted new point k₁ = f(xn+1, Zn+1) and get the corrected point by averaging slopes h Yn+1 = = Yn + 1½ ½ (k1 + k₂). Suppose that we use the Improved Euler's method to approximate the solution to the differential equation dy dx = x - 0.5y, y(0.5) = 9. We let xo = 0.5 and yo 9 and pick a step size h = 0.25. Complete the following table: n xn Yn k1 Zn+1 k₂ 0 0.59-48 -3.25 ♡ <+ help (numbers) The exact solution can also be found for the linear equation. Write the answer as a function of x. y(x) = = help (formulas) Thus the actual value of the…arrow_forward
- Already got wrong Chatgpt answer If ur also Chatgpt user leave itarrow_forwardThe graph of the function f(x) is 1,0 (the horizontal axis is x.) Consider the differential equation x' = f(x). List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equalibria are stable, semi-stable (stable from one side, unstable from the other), or unstable. x = help (numbers) x = help (numbers) x = help (numbers) x = help (numbers) Book: Section 1.6 of Notes on Diffy Qsarrow_forward= A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t = 0, the resulting mass-spring system is disturbed from its rest state by the force F(t) = 60 cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. Determine the spring constant k. k = Newtons/meter help (numbers) Hint is to use earth gravity of 9.8 meters per second squared, and note that Newton is kg meter per second squared. Formulate the initial value problem for x(t), where x(t) is the displacement of the object from its equilibrium rest state, measured positive in the downward direction. Give your answer in terms of x, x',x",t. Differential equation: | help (equations) Initial conditions: x (0) = and '(0) = help (numbers) Solve the initial value problem for x(t). x(t) = ☐ help (formulas) Plot the solution and determine the maximum displacement from equilibrium made by the object on the…arrow_forward
- Suppose f(x) is a continuous function that is zero when x is −1, 3, or 6 and nowhere else. Suppose we tested the function at a few points and found that ƒ(−2) 0, and f(7) < 0. Let x(t) be the solution to x' f(x) and x(0) = 1. Compute: lim x(t) help (numbers) t→∞ Book: Section 1.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem У y' = sin(x) + y(-4) = 5 4 Use Euler's Method with five steps to approximate y(-2) to at least two decimal places (but do not round intermediate results). y(-2) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forwardConsider the differential equation y' = 5y with initial condition y(0) : The actual solution is y(1) = 207.78 help (numbers) = 1.4. We wish to analyze what happens to the error when estimating y(1) via Euler's method. Start with step size h = 1 (1 step). Compute y(1) Error 8.4 help (numbers) 199.38 help (numbers) Note: Remember that the error is the absolute value! Let us half the step size to h = 0.5 (2 steps). Compute y(1) ≈ 17.15 help (numbers) Error = 190.63 help (numbers) The error went down by the factor: Error Previous error Let us half the step size to h = 0.25 (4 steps). Compute y(1) 35.88046875 help (numbers) Error = 171.90 help (numbers) help (numbers) The error went down by the factor: Error Previous error help (numbers) Euler's method is a first order method so we expect the error to go down by a factor of 0.5 each halving. Of course, that's only very approximate, so the numbers you get above are not exactly 0.5. Book: Section 1.7 of Notes on Diffy Qsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage