EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 58SDP
A large bolt is to be produced from extruded hexagonal bar stock by placing the hex stock into a chuck and machining the shank of the bolt by turning it on a lathe. List and explain the difficulties that may be involved in this operation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve the math.
In a turning operation, the workpiece
diameter is Dm=44.00 mm and the
diameter after the operation should
be 22.00 mm. The cutting speed is set
to 105.00 m/min and the federate is
0.03 mm/rev. Calculate the material
3
removal rate (Cm²Imin) for this
operation (Do not input units).
Your Answer:
Answer
I need the answer as soon as possible
Chapter 23 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An external turning operation is performed on a hollow workpiece of 200 mm external diameter and 100 mm inner diameter, at 40 m/min cutting speed, 2 mm depth of cut and 0.20 mm/rev feed. Calculate: The rotational speed for this workpiece. The machining time needed for a length of 250 mm. The material removal rate used. The parting-off time needed if the cross feed is 0.1 mm/rev. The expected tool life if the constants in Taylor Formula are n=0.23 and C= 240. The maximum number of work pieces that could be produced under the given cutting conditions, before the tool needs re-sharpening.arrow_forward1. A 7.5 -mm-diameter drill is used on a drill press operating at 300 rpm. If the feed is 0.125 mm/rev, what is the MRR? What is the MRR if the drill diameter is doubled? 2. Assume that the work piece material is high-strength aluminum alloy and the spindle is running at N = 500 rpm. Estimate the torque required for this operation.arrow_forwardA 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forward
- The outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardQ1. Calculate the time required to machine a workpiece 170 mm long, 60 mm diameter to 165 mm long 50 mm diameter. The workpiece rotates at 440 rpm, feed is 0.3 mm/rev and maximum depth of cut is 2 mm. Assume total approach and overtravel distance as 5 mm for turning operation. Answer Q2. A gray cast iron surface 280 wide and 540mm long may be machined either on a vertical milling machine, using a 100mm - diameter face mill having eight inserted HSS teeth, or on a horizontal milling machine using an HSS slab mill with eight teeth on a 200-mm. diameter. Which machine has the faster cutting time? The values of feed per tooth and cutting speed for both processes are 0.4mm/tooth and 80m/min, respectively. The depth of cut = 3.0 mm and assume A and O equal to 5. Answerarrow_forwardNote: Read the question carefully and give me right solutions according to the question. In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.arrow_forward
- Parvinbhaiarrow_forward(a) Explain the difference between roughing and finishing operations in machining.(b) What are the parameters of a machining operation that are included within the scope of cuttingconditions?(c) What is the difference between threading and tapping?(d) A cylindrical workpiece is to be turned in a lathe. Determine the material removal rate if thecutting speed = 2.30 m/s, feed = 0.32 mm/rev, and depth of cut = 1.8 mm.(e) In a turning operation using high-speed steel tooling, the cutting speed = 110 m/min. The Taylortool life equation has parameters n = 0.140 and C = 150 (m/min) when the operation is conducteddry. When a coolant is used in the operation, the value of C is increased by 15%. Determine thepercent increase in tool life that will result if the cutting speed is maintained at 110 m/min.arrow_forwardI need a solution within 15 minutesarrow_forward
- A 150 mm long with 12.5 mm in diameter of a stainless steel rod is being reduced in diameter to 12.0 mm using a lathe machine. The machine spindle rotates at 400 rpm, and tool is traveling at an axial speed of 200 mm/min. (c) Calculate: (i) Cutting speed (ii) Material remo val rate (iii) Cutting time.arrow_forwardIdentify and explain the method of milling process in which the stresses on the teeth is maximum at the end of the cut with neat diagram.arrow_forwardCalculate the Material Removal Rate of a round bar with diameter 26 mm, is being reduced in diameter to 22 mm by a Turning Process. The feed is 0.24 mm/rev, spindle rotation speed is 22 rev/min? (TWO decimals) (Please note the values may change between each attempt!)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License