EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 57SDP
Boring bars can be designed with internal damping capabilities, to reduce or eliminate vibration and chatter during machining (see Fig. 23.18). Referring to the technical literature, describe details of designs for such boring bars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 600mm*30mm flat surface of a plate is to be finish
machined on a shaper .The plate has been fixed with
600 mm side along the tool travel direction. If the tool
over-travel at each end of the plate is 20 mm, average
cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and
the ratio of return time to cutting time of the tool is 1:2
Determine time required for machining?
manufacturing technology
please answer as soon as possible
A slab-milling operation is carried out on a 200 mm long, 80-mm-wide annealed mild-steel workpiece having a feedrate of 0.1 mm/tooth and a depth of cut of 4.0 mm. The cutter of 50 mm diameter has 18 straight teeth and rotates at 135 rpm. The given specific energy for this material is 3.5 W s/mm3 and the slab mill is wider than the workpiece to be machined. Calculate:‧ the material-removal rate;‧ the power and torque required for this operation;‧ the cutting time.
(243 mm/min, 77760 mm3/min, 4.5 kW, 52.8 s)
Chapter 23 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forwardIn a turning operation, the workpiece diameter is Dm=44.00 mm and the diameter after the operation should be 22.00 mm. The cutting speed is set to 105.00 m/min and the federate is 0.03 mm/rev. Calculate the material 3 removal rate (Cm²Imin) for this operation (Do not input units). Your Answer: Answerarrow_forwardAn external turning operation is performed on a hollow workpiece of 200 mm external diameter and 100 mm inner diameter, at 40 m/min cutting speed, 2 mm depth of cut and 0.20 mm/rev feed. Calculate: The rotational speed for this workpiece. The machining time needed for a length of 250 mm. The material removal rate used. The parting-off time needed if the cross feed is 0.1 mm/rev. The expected tool life if the constants in Taylor Formula are n=0.23 and C= 240. The maximum number of work pieces that could be produced under the given cutting conditions, before the tool needs re-sharpening.arrow_forward
- Suppose in a face milling operation, the dimensions of the workpiece are 5 inches by 10 inches. The cutter is 6 inches in diameter, has 8 teeth, and rotates at 300 rpm. The depth of cut is 0.125 inches and the feedrate is 0.005 inches / tooth. Assume that the specific power requirement for this material is 2 hp min / in3 and that only 75% of the cutter diameter is involved in cutting. Calculate (a) the required power, and (b) the material removal rate.arrow_forward(a) Explain the difference between roughing and finishing operations in machining.(b) What are the parameters of a machining operation that are included within the scope of cuttingconditions?(c) What is the difference between threading and tapping?(d) A cylindrical workpiece is to be turned in a lathe. Determine the material removal rate if thecutting speed = 2.30 m/s, feed = 0.32 mm/rev, and depth of cut = 1.8 mm.(e) In a turning operation using high-speed steel tooling, the cutting speed = 110 m/min. The Taylortool life equation has parameters n = 0.140 and C = 150 (m/min) when the operation is conducteddry. When a coolant is used in the operation, the value of C is increased by 15%. Determine thepercent increase in tool life that will result if the cutting speed is maintained at 110 m/min.arrow_forwardPlain milling is performed to finish a cast iron workpart prior to painting. The milling cutter has a diameter of 80 mm and four equally spaced teeth. The chip load is set to 0.40 mm/tooth and cutting speed is 1.0 m/s. Estimate the surface roughness for i. up-milling, and ii. down-milling.arrow_forward
- In a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed-9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution) L Tm- 1,= Nf N AD, vT" = C %3| AD,L Tm fvarrow_forward11. Estimate the machining time required to rough turn a 0.5 m long annealed copper alloyRound bar from a 60 mm diameter to a 58 mm diameter, using a high-speed tool. Estimate the time required for an uncoated carbide tool.arrow_forwardExplain the production of bolts by rubbing method by drawing a figure. Compare and write the advantages of machining with bolt manufacturing.arrow_forward
- In plane-strain orthogonal machining, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider plane-strain machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forwardSolve the math.arrow_forwardOrthogonal turning is performed on a cylindrical workpiece with shear strength of 250 MPa. The following conditions are used: cutting velocity is 180 m/min, feed is 0.20 mm/rev, depth of cut is 3 mm, chip thickness 0.5. The orthogonal rake angle is 7°. Apply ratio Merchant's theory for analysis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY