EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 48QTP
A lathe is set up to machine a taper on a bar stock 120-mm in diameter; the taper is 1 mm per 10 mm. A cut is made with an initial depth of cut of 4 mm, at a feed rate of 0.250 mm/rev and at a spindle speed of 150 rpm. Calculate the average metal removal rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A shaper is operated at 120 cutting strokes per minute and is used to machine a work piece of 250 mm in
length and 120 mm wide. Use a feed of 0.6 mm per stroke and a depth of cut of 6 mm. Calculate the total
machining time to for machining the component. If the forward stroke is completed in 230°, calculate the
percentage of the time when the tool is not contacting the work piece.
The end of a large tubular workpart is to be faced on a NC vertical boring mill.
The part has an outside diameter of 38.0 in and an inside diameter of 24.0
in. If the facing operation is performed at a rotational speed of 40.0 rev/min,
feed of 0.015 in/rev, and depth of cut of 0.180 in, determine (a) the cutting
time to complete the facing operation and the cutting speeds and metal
removal rates at the beginning and end of the cut.
None
Chapter 23 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics for Engineers: Dynamics
A windowmounted air conditioner removes 3.5kJ from the inside of a home using 1.75 kJ work input. How much ener...
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Consider a subsonic compressible flow in cartesian coordinates where the velocity potential is given by (x,y)=V...
Fundamentals of Aerodynamics
Convert the following quantities from English to SI units: a. 98 Btu/(hr-ft-F) b. 0.24 Btu/(lbm-F) C. 0.04 Ibm/...
Heating Ventilating and Air Conditioning: Analysis and Design
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, (c) 760 Mg?
Statics and Mechanics of Materials (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the time required to machine a workpiece 170 mm long, 60 mm diameter to 165 mm long 50 mm diameter. The workpiece rotates at 440 rpm, feed is 0.3 mm/rev and maximum depth of cut is 2 mm. Assume total approach and overtravel distance as 5 mm for turning operation.arrow_forwardb) A mild steel having length of 350mm and diameter of 12.5 cm, is being reduced to diameter 9.5 cm, for the length of 22cm by turning on lathe, with a spindle speed of 250rpm. Assume feed (f) 2.5 mm/rev and 2 passes to complete the turning operation. Write the formula and calculate (i) Cutting speed (ii) Depth of cut.arrow_forwardA cylinder of 155 mm diameter is to be reduced to 150 mm diameter in one turning cut with a feed of 0.15 mm/rev and a cutting speed of 150 m/min on a NC lathe. What are the programmed feed rate and the material removal ratearrow_forward
- In the lathe machine, the diameter of workpart 35mm is turned at 100 rpm, depth of cut 0.125 mm, length of continuous chip for one revolution of workpart = 60mm, length undeformed chip= 100.53mm, rake angle = 35°, coefficient of friction= 1.5 and resultant cutting force=215.5 N. Calculate: 1- Horizontal cutting force of the tool on the workpart and vertical cutting force required to hold the tool against the work. 2- The forces components applied against the chip by the tool. 3- Velocity of chip relative to the tool and workpart. 4- The percentage of total energy dissipated due to friction along the shear plane, and the friction at the tool-chip interface.arrow_forwardPlate 200 mm x 90 mm is to be maintained on a shaper under following condition, v= 13.5 m/ min Feed is 0.57 mm/ double stroke, Approach and overtravel 20 mm each in longitudinal direction and 4 mm each in lateral direction. The ratio of cutting to the return speed is 0.83.Calculate the machining time in minutes?arrow_forwardIn an orthogonal cutting operation an 8 mm deep groove is to be turned on a 50 mm diameter steel bar. Spindle speed is 300 rpm and a feed rate of 0.25 mm/rev is given to the tool. Produced chips have a width of 2 mm. Calculate the material removal rate at the beginning and at the end of the cut. Can u help me please?arrow_forward
- In a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forwardA surface of 43 mm x 246 mm will be machined by using a shaper and 7 mm deep stock will be removed from the surface. The shaper is operating at 24 strokes/minute and feed is 0.7 mm/stroke. If the maximum stroke length is 827 mm and allowable depth of cut is 0.4 mm for both of rough and finish cuts, what is the total machining time, in minutes ?arrow_forwardI need the answer as soon as possiblearrow_forward
- A cylindrical work part 200 mm in diameter and 700mm long is to be turned in an engine lathe. cutting conditions are as follows: - cutting speed 2.3 m/s. feed is 0.32 mm/rev. depth of cut is 1.8 mm. calculate cutting time.arrow_forwardFor the operation of straight turning in a lathe machine, the diameter of the workpiece is 80 mm, the length is 0.12 m, the cutting speed is 80 m / min, the feed is 0.5 mm / rev and the depth of cut is 0.002 m . Find the material removing rate and the time of machining.arrow_forwardA slab-milling operation is carried out on a 200 mm long, 80-mm-wide annealed mild-steel workpiece having a feedrate of 0.1 mm/tooth and a depth of cut of 4.0 mm. The cutter of 50 mm diameter has 18 straight teeth and rotates at 135 rpm. The given specific energy for this material is 3.5 W s/mm3 and the slab mill is wider than the workpiece to be machined. Calculate:‧ the material-removal rate;‧ the power and torque required for this operation;‧ the cutting time. (243 mm/min, 77760 mm3/min, 4.5 kW, 52.8 s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License