EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 23QLP
A highly oxidized and uneven round bar is being turned on a lathe. Would you recommend a small or a large depth of cut? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius= 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness
can be read on the figure below)
Equations used;
Ra
Ri
Actual
Ratio Theoretical
32NR
= rai Ri
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0
Ductile metals
Cast irons
Free machining alloys.
100
30.5
200
Cutting speed-ft/min
61
Cutting speed - m/min
300
91.5
400
122
Note: Read the question carefully and give me right solutions according to the question.
In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.
(j) In a turning operation on stainless steel with hardness = 200 HB, the cutting speed = 250 m/min, feed = 0.3 mm/rev, and depth of cut = 8 mm. How much power will the lathe draw in performing this operation if its mechanical efficiency = 95%. Use Table below to obtain the appropriate specific energy value.
Chapter 23 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
What types of polymers are most commonly blow molded?
Degarmo's Materials And Processes In Manufacturing
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
5.1 through 5.9
Locate the centroid of the plane area shown.
Fig. P5.1
Vector Mechanics for Engineers: Statics and Dynamics
Compute the hydraulic radius for a circular drain pipe running half full if its inside diameter is 300 mm.
Applied Fluid Mechanics (7th Edition)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics Fundamentals And Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardIdentify and explain the method of milling process in which the stresses on the teeth is maximum at the end of the cut with neat diagram.arrow_forwardA student is using a lathe with 80-hp and 80% efficiency to fabricate a copper alloy with Sy = 1200ksi If the width of cut is 0.30 inand the student set a rake angle of 0and a cutting speed of 200fl / min while she assumed a coefficient of friction to be 0.5. What is the maximum depth of cut the student can achieve?arrow_forward
- A turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius = 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness can be read on the figure below) Equations used R₁ = f² 32NR Ra = rai Ri Actual Theoretical Ratio= 2.4 2.2 2.0 1.8 1.4 1.2 1.0 0 Ductile metals Cast irons Free machining alloys 100 I 30.5 200 Cutting speed-ft/min I 61 300 91.5 Cutting speed - m/min T 400 I 122arrow_forwardIn orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool. the cutting velocity is 90 m/min The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm If the orthogonal rake angle is zero and the principal cutting edge angle is 90° Calculate the shear angle in degree.arrow_forwardIn turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward
- Assuming that the coefficient of friction is 0.25, calculate the maximum depth of cut forturning a hard aluminium alloy on a 15-kW lathe (with a mechanical efficieny of 80%) at awidth of cut of 6 mm, rake angle of 0˚, and a cutting speed of 90 m/min, shear strength of 150 MPa.arrow_forwardA 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forwardParvinbhaiarrow_forward
- i need the answer quicklyarrow_forwardIn a turning operation on low carbon steel with hardness = 135 HB, the cutting speed = 180 m/min, feed = 0.35 mm/rev, and depth of cut = 6.5 mm. The original work piece has 26 mm Diameter and 120 mm Length. How much power will the lathe draw in performing this operation if its mechanical efficiency = 90% and operator's efficiency = 82%? The specific energy is 3.8 J/mm³arrow_forward1.10A O50 mild steel bar is being tumed at 1.70 revis on a multi-tool center lathe having nine tools. For all tools the depth of cut is 4mm, the feed is 0.255mm/rev, and the specific cutting pressure is 1 545N/mm. Calculate the total power consumed for the operationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY