EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 45QTP
In Example 23.4, assume that the workpiece material is high-strength aluminum alloy and the spindle is running at N = 500 rpm. Estimate the torque required for this operation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A slab-milling operation is carried out on a 200 mm long, 80-mm-wide annealed mild-steel workpiece having a feedrate of 0.1 mm/tooth and a depth of cut of 4.0 mm. The cutter of 50 mm diameter has 18 straight teeth and rotates at 135 rpm. The given specific energy for this material is 3.5 W s/mm3 and the slab mill is wider than the workpiece to be machined. Calculate:‧ the material-removal rate;‧ the power and torque required for this operation;‧ the cutting time.
(243 mm/min, 77760 mm3/min, 4.5 kW, 52.8 s)
1. A 7.5 -mm-diameter drill is used on a drill press operating at 300 rpm. If the feed is 0.125 mm/rev, what is the MRR? What is the MRR if the drill diameter is doubled?
2. Assume that the work piece material is high-strength aluminum alloy and the spindle is running at N = 500 rpm. Estimate the torque required for this operation.
Estimate the machining time required in rough turning a 2.0-m-long, annealed aluminum-alloy round bar that is 75 mm in diameter, using (a) a high-speed steel tool; and (b) a carbine tool. Use a feed of 2 mm/rev. Assume max cutting speed for high-speed tools is moving 4 m/s and for carbide tools is moving 7 m/s.
Chapter 23 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In face milling, assume that the Diameter of the cutter is 200 mm, the width of the block is 60 mm, and the length of the block is 344 mm, if the depth of cut is 3 mm, = 0.6 mm/min, and N = 100 rpm. The cutter has 12 inserts, and the workpiece material is bronze. Calculate the estimated power required, the cutting force, and the torque.arrow_forwardIn machining a mild steel work piece with carbide tool, the life of the tool was found to be 1 hour and 40 minutes, at a spindle speed of 30 m/min. Calculate the tool life if it has to be operated at a speed of 40% higher than the initial cutting speed. Also calculate the cutting speed if the tool is required to have a life of 2 hours and 45 minutes. Assume Taylor's exponent valuen is 0.28.arrow_forwardA student is performing a turning operation with a workpiece with an initial diameter of 40 mm to produce a 30 mm diameter rod that is 100 mm long. The lathe power is 20 kW and is operating on 85% mechanical efficiency. If the student set the cutting speed to 0.5 m/min and the cutting tool is set to have a rake angle of 5 degrees: a.) What material can we choose for the rod is the coefficient of friction is 0.5? b.) If we select 4130 normalized heat-treated steel for the rod, and coefficient of friction is 0.5, what will the maximum depth of cut we can achieve?arrow_forward
- Orthogonal turning is performed on a cylindrical workpiece with shear strength of 250 MPa. The following conditions are used: cutting velocity is 180 m/min, feed is 0.20 mm/rev, depth of cut is 3 mm, chip thickness 0.5. The orthogonal rake angle is 7°. Apply ratio Merchant's theory for analysis.arrow_forwardIn a straight turning operations the diameter of a workpiece is reduced from 50 mm 40 mm using a feed rate of 0.1 mm/rev. The cutting tool used for the process has a normal working rake angle of 15°, clearance angle of 4° and a lead angle of 90°. The cutting force of 1200N and a thrust force of 660 N is measured during cutting operations. The workpiece material was stainless steel with a density of 7850 Kg/m³, thermal conductivity is 15 J/smK, specific heat is 480 J/kgK. The width of the secondary deformation zone divided by the chip thickness wo is assumed to be 0.2 for the above mentioned cutting conditions. The chip/tool contact length is measured as 1.5 mm. (a) Calculate the temperature rise in the primary deformation zone (b) Calculate the temperature rise in the secondary deformation zone (c) Calculate the maximum temperature if the room temperature is 24°C If the tool life for the average cutting velocity of 90 m/min is measured as 10 min. and for a cutting velocity of 160 m/min…arrow_forwardCalculate the spindle speed for a Lathe Machine, if the cutting speed for a mild steel material workpiece is 34 m/min and the diameter of the cylindrical workpiece is 46 mm.arrow_forward
- An external turning operation is performed on a hollow workpiece of 200 mm external diameter and 100 mm inner diameter, at 40 m/min cutting speed, 2 mm depth of cut and 0.20 mm/rev feed. Calculate: The rotational speed for this workpiece. The machining time needed for a length of 250 mm. The material removal rate used. The parting-off time needed if the cross feed is 0.1 mm/rev. The expected tool life if the constants in Taylor Formula are n=0.23 and C= 240. The maximum number of work pieces that could be produced under the given cutting conditions, before the tool needs re-sharpening.arrow_forwardThe outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardCalculate the r/min required for finish turning of a 45mm diameter piece of machine steel (The cutting speed of the machine steel is 30m/min).arrow_forward
- A steel rod 250 mm long and 200 mm in diameter is being reduced to 190 mm in diameter all over its length in one travel. The machine spindle rotates at 500 rpm, whereas the tool is moving at an axial feed of 0.5 mm/rev; calculate the following: Material removal rate (mm3/min) Consumed gross power in Nm/s if cutting force is 477.5N and mechanical efficiency is 90% Cutting time plzz complete in 30 minutesarrow_forwardA 6.5 inch long, 0.5 inch diameter stainless steel rod is being reduced to 0.480 inches by turning on a lathe. The spindle rotates at 400 RPM and the tool is travelling at an axial speed of 8 inches/min. Calculate the cutting speed, feed, time, and material removal rate required.arrow_forwardParvinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY