
Concept explainers
(a)
Interpretation:
The reaction or process that is catalyzed by a lipase enzyme should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They are involved in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules. An enzyme is very specific for the substance, pH, and temperature of the surroundings.
(b)
Interpretation:
The reaction or process that is catalyzed by a-ketoglutarate dehydrogenase enzyme should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They are involved in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules. An enzyme is very specific for the substance, pH, and temperature of the surroundings.
(c)
Interpretation:
The reaction or process that is catalyzed by the amylase enzyme should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They are involved in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules. An enzyme is very specific for the substance, pH, and temperature of the surroundings.

Want to see the full answer?
Check out a sample textbook solution
Chapter 23 Solutions
EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM
- (c) (4pts) Mechanism: heat (E1) CH3OH + 1.5pts each _E1 _ (1pt) Br CH3OH (d) (4pts) Mechanism: SN1 (1pt) (e) (3pts) 1111 I H 10 Ill!! H LDA THF (solvent) Mechanism: E2 (1pt) NC (f) Bri!!!!! CH3 NaCN (3pts) acetone Mechanism: SN2 (1pt) (SN1) -OCH3 OCH3 1.5pts each 2pts for either product 1pt if incorrect stereochemistry H Br (g) “,、 (3pts) H CH3OH +21 Mechanism: SN2 (1pt) H CH3 2pts 1pt if incorrect stereochemistry H 2pts 1pt if incorrect stereochemistryarrow_forwardA mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixturearrow_forwardQ5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning




