
(a)
Interpretation:
For the given pair of
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Deactivating groups destabilize the arenium ion intermediate.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
By using table 23-3, the –OH group is strongly activating than
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(b)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Alkyl groups have electron donating inductive effect, thus stabilizing the positive charge on the adjacent carbon. The electrophilic aromatic substitution reaction rate increases with the increase in electron density around the ring. The groups which donate electrons, activates the aromatic ring. Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished relative to benzene; thus the rate of electrophilic aromatic substitution decreases.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(c)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Deactivating groups destabilize the arenium ion intermediate. Activating groups stabilize the arenium ion intermediate by participation of lone pair on the atom of the substituent in resonance.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given pair of compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(d)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished relative to hydrogen; thus, the rate of electrophilic aromatic substitution decreases. Electron-withdrawing group is a deactivator.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given pair of compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(e)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished; thus the rate of electrophilic aromatic substitution decreases. Electron-withdrawing group is a deactivator.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The Cl is a deactivating group. In the compound having two Cl atoms, the reaction is slower than the reaction in that with one atom. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
Presence of two deactivating groups decreases the rate of electrophilic aromatic substitution than that of one group.
(f)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Activating groups stabilize the arenium ion intermediate by participation of lone pair on the atom of the substituent in resonance. Deactivating groups destabilize the arenium ion intermediate.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(g)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. The rate of electrophilic aromatic substitution reaction is increased by strong activating group.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The compound on the left has OH groups that are strong activating groups. The CH3 group is a weak activator. The rate of electrophilic aromatic substitution reaction is increased by strong activating group. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(h)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. As the number of activating group to the ring increases, the rate of electrophilic aromatic substitution reaction increases.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
Both compounds above have activating groups. The compound on the right has two activating groups. Two activating groups to the benzene ring increase the rate of electrophilic aromatic substitution reaction. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
Presence of two deactivating groups decreases the rate of electrophilic aromatic substitution than that of one group.
Want to see more full solutions like this?
Chapter 23 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





