FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
16th Edition
ISBN: 9781323406038
Author: McMurry
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 22.85GP
Interpretation Introduction
Interpretation:
Identify whether equal number of ATP was produced in the oxidation of fructose and oxidation glucose.
Concept Introduction:
- ATP production: In human cells,
cellular respiration release energy from energy-rich organic molecules and changes ADP into ATP. - Aerobic respiration is the main ATP producing pathway
- Anaerobic respiration produces much less ATP and can only be used for short periods.
- Cellular Respiration: Glycolysis produces only a small amount of energy, most of glucose energy (90%) remains locked in the
chemical bond of pyruvic acid at the end of glycolysis. Metabolism is the sum of allchemical reaction of the cell- Catabolism refers to reactions that break down large molecules products to smaller molecule reactants.
- Anabolism it is refers to reactions that make large molecules product from smaller molecules of reactants.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does the yield of ATP from complete oxidation of onemolecule of glucose in muscle and brain differ from that in liver,heart, and kidney? What is the underlying reason for this difference?
Of the 36 molecules of ATP produced by the complete metabolism of glucose, how many are produced directly in glycolysis alone, that is, before the common pathway?
Why is the isomerization of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) an important step in glycolysis? How is the isomerization of F6P back into G6P prevented?
Chapter 22 Solutions
FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
Ch. 22.2 - Prob. 22.1PCh. 22.2 - Prob. 22.2PCh. 22.3 - Prob. 22.3PCh. 22.3 - Prob. 22.4PCh. 22.3 - Prob. 22.5PCh. 22.3 - Prob. 22.6KCPCh. 22.4 - Prob. 22.1CIAPCh. 22.4 - Prob. 22.2CIAPCh. 22.4 - Prob. 22.3CIAPCh. 22.4 - Explain the chemical process that leads to...
Ch. 22.4 - Prob. 22.5CIAPCh. 22.4 - Prob. 22.7PCh. 22.4 - Prob. 22.8PCh. 22.5 - In alcoholic fermentation, each mole of pyruvate...Ch. 22.5 - Name three ways humans have exploited the ability...Ch. 22.5 - Pyruvate has three different fates. What are the...Ch. 22.6 - Prob. 22.12PCh. 22.6 - Prob. 22.13PCh. 22.7 - Prob. 22.14PCh. 22.7 - Prob. 22.15PCh. 22.7 - Prob. 22.16KCPCh. 22.7 - Prob. 22.6CIAPCh. 22.7 - Prob. 22.7CIAPCh. 22.7 - Prob. 22.8CIAPCh. 22.8 - Prob. 22.17PCh. 22.8 - Prob. 22.18PCh. 22.9 - Prob. 22.19PCh. 22.9 - Prob. 22.20PCh. 22.9 - Prob. 22.21PCh. 22.9 - Prob. 22.9CIAPCh. 22.9 - Prob. 22.10CIAPCh. 22.9 - Prob. 22.11CIAPCh. 22.9 - Prob. 22.12CIAPCh. 22 - What class of enzymes catalyzes the majority of...Ch. 22 - Prob. 22.23UKCCh. 22 - Prob. 22.24UKCCh. 22 - Prob. 22.25UKCCh. 22 - Classify each enzyme of glycolysis into one of the...Ch. 22 - Prob. 22.27UKCCh. 22 - Name the molecules used for gluconeogenesis. What...Ch. 22 - Prob. 22.31APCh. 22 - Prob. 22.32APCh. 22 - Prob. 22.33APCh. 22 - Prob. 22.34APCh. 22 - Prob. 22.35APCh. 22 - Prob. 22.36APCh. 22 - Prob. 22.37APCh. 22 - Prob. 22.38APCh. 22 - Prob. 22.39APCh. 22 - Prob. 22.40APCh. 22 - Prob. 22.41APCh. 22 - Prob. 22.42APCh. 22 - Prob. 22.43APCh. 22 - Prob. 22.44APCh. 22 - Prob. 22.45APCh. 22 - Review the 10 steps in glycolysis (Figure 22.3)...Ch. 22 - Prob. 22.47APCh. 22 - Prob. 22.49APCh. 22 - Prob. 22.50APCh. 22 - Prob. 22.51APCh. 22 - How many moles of acetyl-CoA are produced by the...Ch. 22 - Prob. 22.53APCh. 22 - Prob. 22.54APCh. 22 - Prob. 22.55APCh. 22 - Prob. 22.56APCh. 22 - Prob. 22.57APCh. 22 - Prob. 22.58APCh. 22 - Prob. 22.59APCh. 22 - Why does glycogenolysis use fewer steps than the...Ch. 22 - Prob. 22.61APCh. 22 - Prob. 22.62APCh. 22 - Prob. 22.63APCh. 22 - Prob. 22.64APCh. 22 - Prob. 22.65APCh. 22 - Prob. 22.66APCh. 22 - Prob. 22.67APCh. 22 - Prob. 22.68APCh. 22 - Why can pyruvate cross the mitochondrial membrane...Ch. 22 - Look at the glycolysis pathway (Figure 22.3). With...Ch. 22 - Prob. 22.71CPCh. 22 - Prob. 22.72CPCh. 22 - Prob. 22.74CPCh. 22 - Prob. 22.75CPCh. 22 - Prob. 22.76CPCh. 22 - Why is it important for the cell that the NADH...Ch. 22 - Prob. 22.78CPCh. 22 - Prob. 22.79CPCh. 22 - Prob. 22.80CPCh. 22 - Prob. 22.81CPCh. 22 - Prob. 22.82GPCh. 22 - Prob. 22.83GPCh. 22 - It is important to avoid air when making wine, so...Ch. 22 - Prob. 22.85GP
Knowledge Booster
Similar questions
- The complete oxidation of glucose 6-phosphate derived from free glucose yields 30 molecules ATP, whereas the complete oxidation of glucose 6- phosphate derived from glycogen yields 31 molecules of ATP. Account for this difference.arrow_forwardOnly the one question displayed is neededarrow_forwardIn glycolysis, the conversion of phosphoenolpyruvate (PEP) to pyruvate is considered irreversible. Yet, in gluconeogenesis, this "irreverisble" reaction is bypassed and pyruvate is eventually converted to PEP. Explain how gluconeogenesis bypasses this irreverisble reaction. Include the enzymes required to convert pyruvate to PEP + the intermediate that is created. Imagine a scenario where the PDH complex has picked up an "activating" mutation causing it to convert pyruvate into acetyl CoA in an unregulated manner.There is way too much acetyl CoA than is actually necessary. Explain in a sentence or two how the body would compensate for thisarrow_forward
- How many ATP molecules are generated from one complete metabolism of one molecule of maltose assuming all electrons of cytosolic NADH are transferred through the dihydroxyacetone phosphate/glycerol 3-phosphate shuttle?arrow_forwardIf α-ketoglutarate is removed from TCA cycle and used to make glutamate, how many of each of the cofactors (not intermediates) and high energy molecules in the TCA cycle are lost? How much ATP does this equate to (NADH = 2.5 ATP, FADH2 = 1.5 ATP)?arrow_forwardGlucose is converted to pyruvate in glycolysis, yielding a netsynthesis of 2 ATP. In certain cells pyruvate can be reconverted to glucose during gluconeogenesis. How many ATPsare required to convert pyruvate back to glucose?arrow_forward
- The glucose/glucose-6-phosphate substrate cycle involves distinct reactions of glycolysis and gluconcogenesis that interconvert these two metabolites. Assume that under physiological conditions, [ATP] = [ADP] and [Pi] =1 mM. Consider the following glycolytic reaction catalyzed by hexokinase: ATP + glucose = AG' = -16.7 kJ/mol ADP + glucose-6-phosphate (a) Calculate the equilibrium constant (K) for this reaction at 298 K, and from that, calculate the maximum [glucose-6-phosphate]/[glucose] ratio that would exist under conditions where the reaction is still thermody- namically favorable. (b) The reverse of this interconversion in gluconeogenesis is catalyzed by glucose-6-phosphatase: glucose-6-phosphate + H,0 = glucose + P, AGr = -13.8 kJ/mol K= 262 for this reaction. Calculate the maximum ratio of [glucose]/ [glucose-6-phosphate] that would exist under conditions where the reaction is still thermodynamically favorable. (c) Under what cellular conditions would both directions in the…arrow_forwardSome anaerobic bacteria use alternative pathways for glucose catabolism that convert glucose to acetate rather than to pyruvate. Shown below is one possible metabolic pathway. The first part of this pathway (glucose to fructose-1,6-bisphosphate) is identical to the glycolytic pathway. In the second part of the alternative pathway, Enzymes 1–6 all have mechanisms/ activities analogous t enzymes in glycolysis. Note that there are two C¬C bond cleavage reactions in this new pathway: A → B + C (Enzyme 1) and C → B + D. All the steps where ATP is consumed or generated have been shown; however, the addition or loss of NAD+/NADH, Pi , H2O, or H+ has not been shown explicitly. Draw the structures for the intermediates B, F, G, H, and I, and include other reaction participants as needed.arrow_forwardThe “bridge reaction”, using pyruvate dehydrogenase, is highly exergonic and is essentially irreversible. Name the 3 outcomes (name any activated carriers produced, name the molecule that is produced from losing one carbon atom from pyruvate, and name any modification to the remaining two carbon compound of interest ) of the separate enzyme activities found within the large dehydrogenase complex.arrow_forward
- In the living cell, free energy made from one reaction can be used to drive another in an energetically unfavorable direction, provided the two reactions have a common intermediate (this is termed the principle of common intermediates). Example: In glycolysis, glucose is converted into pyruvate; in gluconeogenesis, pyruvate is converted into glucose. However, the actual ΔG for the formation of pyruvate from glucose is about -84 kJ/mol under typical cellular conditions. Most of the decrease in free energy in glycolysis takes place in three essentially irreversible steps catalyzed by, hexokinase, pyruvate kinase and phosphofructokinase. Use one of the 3 opposing reactions (in glycolysis and gluconeogenesis) to demonstrate the PRINCIPLE OF COMMON INTERMEDIATESarrow_forward(a)What are the two superfamilies of proteins in which amylase is categorized? (b)To which superfamily of proteins does active site of the amylase belong?arrow_forwardConsider an alternative glycolysis pathway that starts with the phosphorylation of glucose to give glucose-6-phosphate. This (hypothetical) pathway exists in a (hypothetical) organism that does not express glucose-6-phosphate isomerase. Instead, the next step of this hypothetical pathway is a Glucose-6-Phosphate Aldolase. Draw the product or products that would be obtain by the reaction of Glucose – 6 – Phosphate with Glucose – 6 Phosphate Aldolase. Assume the reaction is completely irreversible. Explain in 1-3 sentences how you obtained your answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON