EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 41QLP
The Taylor tool-life equation is directly applicable to flank wear. Explain whether or not it can be used to model tool life if other forms of wear are dominant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Taylor's equation is used to predict the life of a tool. Explain the main parameters
that effect a tool life with the help of a graph.
A process engineer is trying to improve the life of a cutting tool. He has run a 23 experiment using (1) cutting speed, (2) metal hardness, (3) and cutting angle as the factors. The data from the 2 replicates are shown below.
(a) Do any of the 3 factors affect tool life?
(b)what combination of the factor levels produces the longest tool life?
(c) Is there a combination of cutting speed and cutting angle that always gives good results regardless of metal hardness?
Replicate
Run
I
II
(1)
221
311
a
325
435
b
354
348
ab
552
472
c
440
453
ac
406
377
bc
605
500
abc
392
419
Tool life tests in turning yield the following data: (1) v = 100 m/min, T = 10 min; (2) v = 75 m/min, T = 30 min. (a) Determine the n and C values in the Taylor tool life equation. Based on your equation, compute (b) the tool life for a speed of 90 m/min, and (c) the speed corresponding to a tool life of 20 min
Chapter 21 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 21 - Explain why continuous chips are not necessarily...Ch. 21 - Name the factors that contribute to the formation...Ch. 21 - What is the cutting ratio? Is it always less than...Ch. 21 - Explain the difference between positive and...Ch. 21 - Explain how a dull tool can lead to negative rake...Ch. 21 - Comment on the role and importance relief angle.Ch. 21 - Explain the difference between discontinuous chips...Ch. 21 - Why should we be interested in the magnitude of...Ch. 21 - What are the differences between orthogonal and...Ch. 21 - What is a BUE? Why does it form?
Ch. 21 - Is there any advantage to having a built-up edge...Ch. 21 - What is the function of chip breakers? How do they...Ch. 21 - Identify the forces involved in a cutting...Ch. 21 - Explain the characteristics of different types of...Ch. 21 - List the factors that contribute to poor surface...Ch. 21 - Explain what is meant by the term machinability...Ch. 21 - What is shaving in machining? When would it be...Ch. 21 - List reasons that machining operations may be...Ch. 21 - Are the locations of maximum temperature and...Ch. 21 - Is material ductility important for machinability?...Ch. 21 - Explain why studying the types of chips produced...Ch. 21 - Prob. 22QLPCh. 21 - Tool life can be almost infinite at low cutting...Ch. 21 - Explain the consequences of allowing temperatures...Ch. 21 - The cutting force increases with the depth of cut...Ch. 21 - Why is it not always advisable to increase the...Ch. 21 - What are the consequences if a cutting tool chips?Ch. 21 - What are the effects of performing a cutting...Ch. 21 - Prob. 29QLPCh. 21 - Prob. 30QLPCh. 21 - Prob. 31QLPCh. 21 - Prob. 32QLPCh. 21 - Comment on your observations regarding Figs. 21.1...Ch. 21 - Prob. 34QLPCh. 21 - Comment on your observations regarding the...Ch. 21 - Why does the temperature in cutting depend on the...Ch. 21 - You will note that the values of a and b in Eq....Ch. 21 - Prob. 38QLPCh. 21 - Prob. 39QLPCh. 21 - Explain whether it is desirable to have a high or...Ch. 21 - The Taylor tool-life equation is directly...Ch. 21 - Prob. 42QLPCh. 21 - Why are tool temperatures low at low cutting...Ch. 21 - Can high-speed machining be performed without the...Ch. 21 - Prob. 45QLPCh. 21 - Prob. 46QLPCh. 21 - State whether or not the following statements are...Ch. 21 - Let n = 0.5 and C = 400 in the Taylor equation for...Ch. 21 - Assume that, in orthogonal cutting, the rake angle...Ch. 21 - Prob. 50QTPCh. 21 - Prob. 51QTPCh. 21 - Using trigonometric relationships, derive an...Ch. 21 - An orthogonal cutting operation is being carried...Ch. 21 - Prob. 54QTPCh. 21 - Prob. 55QTPCh. 21 - Prob. 56QTPCh. 21 - Show that, for the same shear angle, there are two...Ch. 21 - With appropriate diagrams, show how the use of a...Ch. 21 - In a cutting operation using a 5 rake angle, the...Ch. 21 - For a turning operation using a ceramic cutting...Ch. 21 - In Example 21.3, if the cutting speed V is...Ch. 21 - Using Eq. (21.30), select an appropriate feed for...Ch. 21 - With a carbide tool, the temperature in a cutting...Ch. 21 - The following flank wear data were collected in a...Ch. 21 - The following data are available from orthogonal...Ch. 21 - Prob. 66QTPCh. 21 - Design an experimental setup whereby orthogonal...Ch. 21 - Describe your thoughts on whether chips produced...Ch. 21 - Recall that cutting tools can be designed so that...Ch. 21 - Recall that the chip-formation mechanism also can...Ch. 21 - Prob. 73SDPCh. 21 - Describe your thoughts regarding the recycling of...Ch. 21 - List products that can be directly produced from...Ch. 21 - Obtain a wood planer and some wood specimens. Show...Ch. 21 - It has been noted that the chips from certain...Ch. 21 - As we have seen, chips carry away the majority of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Define specific energy for plane strain machining (cutting). In plane-strain machỉning, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forwardI need the answer as soon as possiblearrow_forwardWhat are assessments that measure strength, speed, agility, or high-speed strength? What are the protocols and norms for each?arrow_forward
- In an orthogonal cutting test with a bar of 75 mm diameter is reduced to 73 mm by using a HSS tool with arake angle = 10o, following observations were made: length of the chip, lc = 69.44 mm, cutting ratio r =0.3, the horizontal component of the cutting force, FH = 1450 N, and the vertical component of the cuttingforce, FV = 850 N. The various parameters recorded in this cutting operation are: depth of cut, d = 2 mm;feed rate, f = 0.3 mm/rev, cutting speed, V = 60 m/min. Using Merchant’s theory calculate the following:1) Friction force along rake face2) Normal force acting on rake face3) Shear force along the shear plane4) Normal force acting on shear plane5) The percentage error in shear angle predicted by Merchant’s theory6) Shear velocity7) Chip velocity8) Total work done9) The shear work proportion out of the total work done10) The friction work proportion out of the total work donearrow_forward100 mm is to be turned at 200 rev/min and feed A batch of 500 jobs of diameter 50 mm and length 0.2 mm/rev. Applying Taylor's equation VTO.25 = 160, the tool %3D life is minutes is (a) 20.36 (b) 22.43 (c) 674 (d) 28.20arrow_forwardThis Question is from Metal and Machine Tools. Due Today Please Answer !!arrow_forward
- A 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forwardThree tool materials are to be compared for the same finish turning operation on a batch of 100 steel parts: high speed steel, cemented carbide, and ceramic. For the high speed steel tool, the 170 Taylor equation parameters are: n = 0.125 and C = 70. The price of the HSS tool is $15.00 and it is estimated that it can be ground and reground 15 times at a cost of $1.50. Tool change time = 3 min. Both carbide and ceramic tools are in insert form and can be held in the same mechanical toolholder. The Taylor equation parameters for the cemented carbide are: n = 0.25 and C = 500; and for the ceramic: n = 0.6 and C = 3,000. The cost per insert for the carbide = $6.00 and for the ceramic = $8.00. Number of cutting edges per insert in both cases = 6. Tool change time = 1.0 min for both tools. Time to change parts = 2.0 min. Feed = 0.25 mm/rev, and depth = 3.0 mm. The cost of machine time = $30/hr. The part dimensions are: diameter = 56.0 mm and length = 290 mm. Setup time for the batch is 2.0…arrow_forward8. During the turning of a 20mm-diameter steel bar at a spindle speed of 400 rpm, a tool life of 20 minute is obtained. When the same bar is turned at 200 rpm, the tool life becomes 60 minute. Assume that Taylor"s tool life equation is valid. When the bar is turned at 300 rpm, the tool life (in minute) is approximately. (A) 25 (B) 32 (C) 40 (D) 50arrow_forward
- Estimate the moment, thrust force and power required for 15mm drill having a feed of 0.35 mm/rev, turningat 80 rpm, cutting a steel of Brinell hardness 250. Assume Material factor K = 1.20 and web thickness w =0.14 D. Check the values with that obtained with empirical formula.arrow_forwardQuestion 2. The two sources of heat are (a) shearing in the primary shear plane and (b) friction at the tool-chip interface. What type of the tool wear or tool failure could be caused as a result of developing these heat sources on machining process? Explain your answer in accordance with following representation of tool wear. Insert cutting edgearrow_forwardIn a cutting test with 0.3 mm flank wear as tool failure criterion, a tool life of 10 min was obtained at a cutting velocity of 20 m/min. Taking tool life exponent as 0.25, the tool life in minutes at 40 m/min of cutting velocity will bearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License