EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 12RQ
What is the function of chip breakers? How do they function? Do you need a chip breaker to eliminate continuous chips in oblique cutting? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
44. In Orthogonal Cutting Model, why chip thickness after cut is greater than chip thickness before cut? explain.
An orthogonal cutting operation is performed using a rake angle of 15°, chip thickness
before the cut = 0.012 in and width of cut = 0.100 in. The chip thickness ratio is measured
after the cut to be 0.55. Determine (a) the chip thickness after the cut, (b) shear angle, (c)
friction angle, (d) coefficient of friction, and (e) shear strain.
During orthogonal cutting operation of material has shear strength 95.5 Mpa.
The cutting force is more than thrust force by 10%. The rake angle = 5°, the width of
the cut = 5.0 mm, the chip thickness before the cut = 0.6, and the chip thickness ratio
= 0.38. Determine (a) both cutting force and thrust force and (b) the coefficient of
friction in the operation.
Chapter 21 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 21 - Explain why continuous chips are not necessarily...Ch. 21 - Name the factors that contribute to the formation...Ch. 21 - What is the cutting ratio? Is it always less than...Ch. 21 - Explain the difference between positive and...Ch. 21 - Explain how a dull tool can lead to negative rake...Ch. 21 - Comment on the role and importance relief angle.Ch. 21 - Explain the difference between discontinuous chips...Ch. 21 - Why should we be interested in the magnitude of...Ch. 21 - What are the differences between orthogonal and...Ch. 21 - What is a BUE? Why does it form?
Ch. 21 - Is there any advantage to having a built-up edge...Ch. 21 - What is the function of chip breakers? How do they...Ch. 21 - Identify the forces involved in a cutting...Ch. 21 - Explain the characteristics of different types of...Ch. 21 - List the factors that contribute to poor surface...Ch. 21 - Explain what is meant by the term machinability...Ch. 21 - What is shaving in machining? When would it be...Ch. 21 - List reasons that machining operations may be...Ch. 21 - Are the locations of maximum temperature and...Ch. 21 - Is material ductility important for machinability?...Ch. 21 - Explain why studying the types of chips produced...Ch. 21 - Prob. 22QLPCh. 21 - Tool life can be almost infinite at low cutting...Ch. 21 - Explain the consequences of allowing temperatures...Ch. 21 - The cutting force increases with the depth of cut...Ch. 21 - Why is it not always advisable to increase the...Ch. 21 - What are the consequences if a cutting tool chips?Ch. 21 - What are the effects of performing a cutting...Ch. 21 - Prob. 29QLPCh. 21 - Prob. 30QLPCh. 21 - Prob. 31QLPCh. 21 - Prob. 32QLPCh. 21 - Comment on your observations regarding Figs. 21.1...Ch. 21 - Prob. 34QLPCh. 21 - Comment on your observations regarding the...Ch. 21 - Why does the temperature in cutting depend on the...Ch. 21 - You will note that the values of a and b in Eq....Ch. 21 - Prob. 38QLPCh. 21 - Prob. 39QLPCh. 21 - Explain whether it is desirable to have a high or...Ch. 21 - The Taylor tool-life equation is directly...Ch. 21 - Prob. 42QLPCh. 21 - Why are tool temperatures low at low cutting...Ch. 21 - Can high-speed machining be performed without the...Ch. 21 - Prob. 45QLPCh. 21 - Prob. 46QLPCh. 21 - State whether or not the following statements are...Ch. 21 - Let n = 0.5 and C = 400 in the Taylor equation for...Ch. 21 - Assume that, in orthogonal cutting, the rake angle...Ch. 21 - Prob. 50QTPCh. 21 - Prob. 51QTPCh. 21 - Using trigonometric relationships, derive an...Ch. 21 - An orthogonal cutting operation is being carried...Ch. 21 - Prob. 54QTPCh. 21 - Prob. 55QTPCh. 21 - Prob. 56QTPCh. 21 - Show that, for the same shear angle, there are two...Ch. 21 - With appropriate diagrams, show how the use of a...Ch. 21 - In a cutting operation using a 5 rake angle, the...Ch. 21 - For a turning operation using a ceramic cutting...Ch. 21 - In Example 21.3, if the cutting speed V is...Ch. 21 - Using Eq. (21.30), select an appropriate feed for...Ch. 21 - With a carbide tool, the temperature in a cutting...Ch. 21 - The following flank wear data were collected in a...Ch. 21 - The following data are available from orthogonal...Ch. 21 - Prob. 66QTPCh. 21 - Design an experimental setup whereby orthogonal...Ch. 21 - Describe your thoughts on whether chips produced...Ch. 21 - Recall that cutting tools can be designed so that...Ch. 21 - Recall that the chip-formation mechanism also can...Ch. 21 - Prob. 73SDPCh. 21 - Describe your thoughts regarding the recycling of...Ch. 21 - List products that can be directly produced from...Ch. 21 - Obtain a wood planer and some wood specimens. Show...Ch. 21 - It has been noted that the chips from certain...Ch. 21 - As we have seen, chips carry away the majority of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (e) Briefly describe types of chips that occur in metal cutting. (f) For orthogonal cutting, the tool rake angle =15°. The chip thickness before the cut is 0.30mm and the cut yields a deformed chip thickness = 0.65mm. Calculate the shear plane angle and shear strain.arrow_forwardDraw the forces and angles involved in the cutting process and calculate shear angle (0), friction coefficient and tangential force if ,cutting force = 80 kN, resultant of forces =100kN, friction force=75kN, rake angle =20° undeformed chip thickness = 0.65mm and deformed chip thickness = 0.72mmarrow_forwardA 600mm*30mm flat surface of a plate is to be finish machined on a shaper .The plate has been fixed with 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm, average cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and the ratio of return time to cutting time of the tool is 1:2 Determine time required for machining?arrow_forward
- Note: Read the question carefully and give me right solutions according to the question. In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.arrow_forwardDraw the forces and angles involved in the cutting process and calculate shear angle (Ø), friction coefficient and tangential force ,cutting force = 80 kN, resultant of forces =100KN. friction force=75KN, rake angle =20' undeformed chip thickness = 0.65mm and deformed chip thickness = 0.72mm vjallarrow_forward(b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to = 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fc = 500 N, and Thrust force, F1= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process.arrow_forward
- Following are the data in an orthogonal cutting operation. Rake angle = 15° Cutting speed = 20 m/min Chip thickness = 0.7 mm Width of cut = 4.5 mm Cutting ratio = 0.714 Assuming Merchant's theory, coefficient of friction at the tool-chip interface isarrow_forwardIn an orthogonal cutting test with a bar of 75 mm diameter is reduced to 73 mm by using a HSS tool with arake angle = 10o, following observations were made: length of the chip, lc = 69.44 mm, cutting ratio r =0.3, the horizontal component of the cutting force, FH = 1450 N, and the vertical component of the cuttingforce, FV = 850 N. The various parameters recorded in this cutting operation are: depth of cut, d = 2 mm;feed rate, f = 0.3 mm/rev, cutting speed, V = 60 m/min. Using Merchant’s theory calculate the following:1) Friction force along rake face2) Normal force acting on rake face3) Shear force along the shear plane4) Normal force acting on shear plane5) The percentage error in shear angle predicted by Merchant’s theory6) Shear velocity7) Chip velocity8) Total work done9) The shear work proportion out of the total work done10) The friction work proportion out of the total work donearrow_forward(a) Draw and label the basic orthogonal cutting process model. The diagram must include cutting direction, shear plane, chip formation and all relevant angles. (b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fo = 5000 N, and Thrust force, Fi= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process. *)arrow_forward
- In an orthogonal cutting test, the cutting force and thrust force were observed to be 1000N and 500 N respectively. If the rake angle of tool is zero, What is the coefficient of friction in chip-tool interface ?arrow_forwardIn a turning operation, the workpiece diameter is Dm=44.00 mm and the diameter after the operation should be 22.00 mm. The cutting speed is set to 105.00 m/min and the federate is 0.03 mm/rev. Calculate the material 3 removal rate (Cm²Imin) for this operation (Do not input units). Your Answer: Answerarrow_forwardAssume that, in orthogonal cutting, the rake angle, oz,is 20° and the friction angle, B, is 35° at the chip-tool interface.Determine the percentage change in chip thickness when the friction angle is 50°. (Note: do not use Eq. (21.3)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License