PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21.9E
Interpretation Introduction
Interpretation:
The Bravais lattice that can be described for the unit cell proposed by the researcher is to be stated.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. Unit cell can be a cubic unit cell or hexagonal unit cell. The classification of a unit cell depends on the lattice site occupied by the atoms.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For structures consisting of identical atoms, how manyatoms are contained in the simple, body-centered, and face-centered cubic unit cells? Explain how you obtained the values.
Explain face centered cubic unit cell in the simplest way possible and create an overview about it and its objective to impart on students.
1. Simple Cubic Unit Cell
(b)
Fig 5. Simple Cubic (SC) Unit Cell. (a) Ball-and-Stick Model (b) Space-filled Model (c) Stacking
(a)
a. Each corner atom of the unit cell would be shared by how many unit cells?
Answer:
b. Assuming the atoms as perfect spheres, how much of a corner atom is used by
just a single unit cell?
Answer:
c. If there are atoms at the eight corners of a simple cubic cell and each atom is
shared by eight unit cells, how many total atoms are there per simple cubic unit
cell?
Answer:
Chapter 21 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 21 - Prob. 21.1ECh. 21 - Boron nitride, BN, is a very hard material, harder...Ch. 21 - Prob. 21.3ECh. 21 - Prob. 21.4ECh. 21 - Figure 21.35 shows a unit cell of diamond....Ch. 21 - Prob. 21.6ECh. 21 - How many different unit cells can a crystal have...Ch. 21 - Prob. 21.8ECh. 21 - Prob. 21.9ECh. 21 - Prob. 21.10E
Ch. 21 - Prob. 21.11ECh. 21 - Prob. 21.12ECh. 21 - Prob. 21.13ECh. 21 - Prob. 21.14ECh. 21 - Prob. 21.15ECh. 21 - Prob. 21.16ECh. 21 - Prob. 21.17ECh. 21 - Prob. 21.18ECh. 21 - Prob. 21.19ECh. 21 - Prob. 21.20ECh. 21 - Prob. 21.21ECh. 21 - Prob. 21.22ECh. 21 - Prob. 21.23ECh. 21 - Prob. 21.24ECh. 21 - Prob. 21.25ECh. 21 - Prob. 21.26ECh. 21 - Prob. 21.27ECh. 21 - Prob. 21.28ECh. 21 - For a simple cubic lattice, what is the ratio of...Ch. 21 - Prob. 21.30ECh. 21 - Prob. 21.31ECh. 21 - Consider Figure 21.21. If the lower rightmost...Ch. 21 - Prob. 21.33ECh. 21 - The aluminum-nickel alloy AlNi has a simple cubic...Ch. 21 - Prob. 21.35ECh. 21 - The first two signals from a powdered sample has X...Ch. 21 - Prob. 21.37ECh. 21 - Prob. 21.38ECh. 21 - Prob. 21.39ECh. 21 - Prob. 21.40ECh. 21 - Prob. 21.41ECh. 21 - Prob. 21.42ECh. 21 - Prob. 21.43ECh. 21 - Prob. 21.44ECh. 21 - Prob. 21.45ECh. 21 - What is the coordination number in the cesium...Ch. 21 - Prob. 21.47ECh. 21 - Which solid phase that is, which allotrope of...Ch. 21 - Prob. 21.49ECh. 21 - Prob. 21.50ECh. 21 - Write Born-Haber cycles showing the relationship...Ch. 21 - Prob. 21.52ECh. 21 - Prob. 21.53ECh. 21 - Prob. 21.54ECh. 21 - The lattice energy for potassium iodide, KI, is...Ch. 21 - Prob. 21.56ECh. 21 - Prob. 21.57ECh. 21 - Prob. 21.58ECh. 21 - Prob. 21.59ECh. 21 - Prob. 21.60ECh. 21 - Prob. 21.61ECh. 21 - Prob. 21.62ECh. 21 - Prob. 21.63ECh. 21 - Prob. 21.64E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Describe the unit cell of lithium (see Figure).arrow_forward• describe the arrangement of atoms in the common cubic crystal lattices and calculate the packing efficiency for a lattice.arrow_forwardHow many different unit cells can a crystal have if the unit cell a has all 90 angles between its crystal axes; b has all of its unit cell dimensions the same length; c has at least one 90 angle between axes; d has no perpendicular axes or equivalent unit cell dimensions?arrow_forward
- Write the relationship between atomic radius (r) and edge length (a) ofcubic unit cell for(a) Simple cubic unit cell(b) Body-centred cubic unit cell(c) Face-centred cubic unit cellarrow_forwardDetermine the empirical formula given the unit cell (the image will also be posted at General). You need to input the three equations for unit cell content. Red = BismuthYellow-green = IronBlue (on the faces) = Oxygenarrow_forwardMetallic potassium has a body-centered cubic structure. If the edge length of unit cell is 533 pm, calculate the radius of potassium atom. please explain the process of computationarrow_forward
- Why are there no more than 7 crystal systems ? What are quasicrystals ?arrow_forwardSimple cubic cell can be generated be generated by placing a layer above and below this layer in such a way that spheres in one layer are directly over the spheres in the layer below it. The corner atoms touch one another. State materials that have the SCC structure.arrow_forward3. Face- Centered Unit Cell (b) Fig 7. Face-Centered Cubic (FCC) Unit Cell. (a) Ball-and-Stick Model (b) Space-filled Model (c) Stacking (a) (c) a. How many unit cells share each atom on each face of the face-centered cubic unit cell? Answer b. How many total atoms are there in a face centered cubie cell. Answer, What is the coordination number of the atom on each face of the face-centered unit cell and the coordination number of an atom at the corner of this unit cell? C. Write your answer in the summary table. Answer:arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning