![PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.](https://www.bartleby.com/isbn_cover_images/9781285074788/9781285074788_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The angles of diffraction for a cubic crystal for the given incoming X radiation are to be calculated.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. The parameters of a crystal can be obtained experimentally by X-ray diffraction technique.
![Check Mark](/static/check-mark.png)
Answer to Problem 21.64E
The table that represents the miller indices and corresponding value of diffraction angle is shown below as,
Miller indices |
Diffraction angle |
Explanation of Solution
The wavelength of the given X-ray is
The given lattice parameter is
The value of
The Bragg equation for diffraction of X rays is given by an expression as shown below.
Where,
•
•
•
•
•
Rearrange the equation (1) for the value of
The value of
Miller indices |
Diffraction angle |
|
The table that represents the miller indices and corresponding value of diffraction angle is shown below as,
Miller indices |
Diffraction angle |
(b)
Interpretation:
The diffractions that would be absent if the given crystal were body-centered cubic or face centered cubic are to be determined.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. The parameters of a crystal can be obtained experimentally by X-ray diffraction technique.
![Check Mark](/static/check-mark.png)
Answer to Problem 21.64E
The diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
The diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
Explanation of Solution
From Table
The Miller indices of diffractions those are present in body centered cubic crystal are
Therefore, the diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below as,
Miller indices |
Diffraction angle |
|
From Table
The Miller indices of diffractions those are present in face centered cubic crystal are
Therefore, the diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below as,
Miller indices |
Diffraction angle |
|
The diffractions that would be absent if the given crystal was body-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
The diffractions that would be absent if the given crystal was face-centered cubic are represented in the table shown below.
Miller indices |
Diffraction angle |
Want to see more full solutions like this?
Chapter 21 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Explain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward
- (ME EX1) Prblm #4-11 Can you please help me and explain these I'm very confused in detail please. Prblm number 9 I don't understand at all (its soo confusing to me and redraw it so I can better depict it).arrow_forwardME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forwardCalculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward
- ( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forwardA. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forwardWater is boiling at 1 atm pressure in a stainless steel pan on an electric range. It is observed that 2 kg of liquid water evaporates in 30 min. Find the rate of heat transfer to the water (kW).arrow_forward
- Could you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the resonance structures that were given please.arrow_forwardCould you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the question.arrow_forwardplease solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)