PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21.4E
Interpretation Introduction
Interpretation:
The reason as to why it is not possible to have a tenfold symmetry unit cell in two dimensions is to be stated.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. Unit cell can be a cubic unit cell or hexagonal unit cell. The classification of a unit cell depends on the lattice site occupied by the atoms.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the separations of the planes {123} and {236} in an orthorhombic crystal in which the unit cell has sides of lengths 784, 633, and 454 pm.
A face-centered tetragonal lattice is not one of the 14three-dimensional lattices. Show that a face-centeredtetragonal unit cell can be redefined as a body-centeredtetragonal lattice with a smaller unit cell.
Make a table for comparison between the interior angles of the seven (7) unit cells and explain.There are seven types of unit cells: (1) simple cubic, (2) tetragonal, (3) orthorhombic, (4) rhombohedral, (5) monoclinic, (6) triclinic, and (7) hexagonal.
Chapter 21 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 21 - Prob. 21.1ECh. 21 - Boron nitride, BN, is a very hard material, harder...Ch. 21 - Prob. 21.3ECh. 21 - Prob. 21.4ECh. 21 - Figure 21.35 shows a unit cell of diamond....Ch. 21 - Prob. 21.6ECh. 21 - How many different unit cells can a crystal have...Ch. 21 - Prob. 21.8ECh. 21 - Prob. 21.9ECh. 21 - Prob. 21.10E
Ch. 21 - Prob. 21.11ECh. 21 - Prob. 21.12ECh. 21 - Prob. 21.13ECh. 21 - Prob. 21.14ECh. 21 - Prob. 21.15ECh. 21 - Prob. 21.16ECh. 21 - Prob. 21.17ECh. 21 - Prob. 21.18ECh. 21 - Prob. 21.19ECh. 21 - Prob. 21.20ECh. 21 - Prob. 21.21ECh. 21 - Prob. 21.22ECh. 21 - Prob. 21.23ECh. 21 - Prob. 21.24ECh. 21 - Prob. 21.25ECh. 21 - Prob. 21.26ECh. 21 - Prob. 21.27ECh. 21 - Prob. 21.28ECh. 21 - For a simple cubic lattice, what is the ratio of...Ch. 21 - Prob. 21.30ECh. 21 - Prob. 21.31ECh. 21 - Consider Figure 21.21. If the lower rightmost...Ch. 21 - Prob. 21.33ECh. 21 - The aluminum-nickel alloy AlNi has a simple cubic...Ch. 21 - Prob. 21.35ECh. 21 - The first two signals from a powdered sample has X...Ch. 21 - Prob. 21.37ECh. 21 - Prob. 21.38ECh. 21 - Prob. 21.39ECh. 21 - Prob. 21.40ECh. 21 - Prob. 21.41ECh. 21 - Prob. 21.42ECh. 21 - Prob. 21.43ECh. 21 - Prob. 21.44ECh. 21 - Prob. 21.45ECh. 21 - What is the coordination number in the cesium...Ch. 21 - Prob. 21.47ECh. 21 - Which solid phase that is, which allotrope of...Ch. 21 - Prob. 21.49ECh. 21 - Prob. 21.50ECh. 21 - Write Born-Haber cycles showing the relationship...Ch. 21 - Prob. 21.52ECh. 21 - Prob. 21.53ECh. 21 - Prob. 21.54ECh. 21 - The lattice energy for potassium iodide, KI, is...Ch. 21 - Prob. 21.56ECh. 21 - Prob. 21.57ECh. 21 - Prob. 21.58ECh. 21 - Prob. 21.59ECh. 21 - Prob. 21.60ECh. 21 - Prob. 21.61ECh. 21 - Prob. 21.62ECh. 21 - Prob. 21.63ECh. 21 - Prob. 21.64E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How many different unit cells can a crystal have if the unit cell a has all 90 angles between its crystal axes; b has all of its unit cell dimensions the same length; c has at least one 90 angle between axes; d has no perpendicular axes or equivalent unit cell dimensions?arrow_forwardSketch the Miller plane in a unit cell (0-1-3).arrow_forward6. Taking one of the corners to be the origin, give the lattice points for the face centered cubic unit cell expressed as fractions of the unit cell dimensions (x, y, z).arrow_forward
- The unit cells of SbCI3 are orthorhombic with dimensions a= 812 pm, b = 947 pm, and c = 637 pm. Calculate the spacing of (a) the {321} planes, {b} the {642} planes.arrow_forwardIndicate the planes (a) (100), (b) (134), and (c) (102) within a unit cellarrow_forwardAn orthorhombic unit cell has dimensions a = 769 pm, b = 891 pm, and c = 690 pm. Calculate the spacing, d, of the {312} planes.arrow_forward
- Define the following:(i) Primitive unit cell (ii) Schottky defect (iii)Ferromagnetism.arrow_forwardCalculate the radius of a vanadium (V) atom, given that its density is 6.11 g/cm3 and that it crystallizes in a body-centred cubic unit cell.arrow_forwardDraw an orthorhombic unit cell and mark on it the (100), (010), (001), (011), (101), and (110) planes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks Cole
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole