PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21.56E
Interpretation Introduction
Interpretation:
The trend between charge density of an ion and the lattice energy of similar ionic crystals is to be predicted. The justification of this trend on physical principles is to be stated.
Concept introduction:
The amount of energy released when one formula unit moles of oppositely charged gaseous ions binds together to form a crystal is known as the lattice energy. The value of lattice energy is negative. It is used as the measure for stability of a crystal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the energy needed to dissociate 1.00 mol of crystalline RbCl into its gaseous ions if the Madelung constant for its structure is 1.7476 and the radii of Rb1 and Cl- are 1.48 Å and 1.81 Å, respectively. Assume that the repulsive energy reduces the lattice energy by 10% from the pure Coulomb energy
Use sketch diagrams to show the 110 and 211̅ lattice plane for a tetragonal crystal.
For ionic lattices, explain why the nearest neighbors of cations are anions and vice versa.
Chapter 21 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 21 - Prob. 21.1ECh. 21 - Boron nitride, BN, is a very hard material, harder...Ch. 21 - Prob. 21.3ECh. 21 - Prob. 21.4ECh. 21 - Figure 21.35 shows a unit cell of diamond....Ch. 21 - Prob. 21.6ECh. 21 - How many different unit cells can a crystal have...Ch. 21 - Prob. 21.8ECh. 21 - Prob. 21.9ECh. 21 - Prob. 21.10E
Ch. 21 - Prob. 21.11ECh. 21 - Prob. 21.12ECh. 21 - Prob. 21.13ECh. 21 - Prob. 21.14ECh. 21 - Prob. 21.15ECh. 21 - Prob. 21.16ECh. 21 - Prob. 21.17ECh. 21 - Prob. 21.18ECh. 21 - Prob. 21.19ECh. 21 - Prob. 21.20ECh. 21 - Prob. 21.21ECh. 21 - Prob. 21.22ECh. 21 - Prob. 21.23ECh. 21 - Prob. 21.24ECh. 21 - Prob. 21.25ECh. 21 - Prob. 21.26ECh. 21 - Prob. 21.27ECh. 21 - Prob. 21.28ECh. 21 - For a simple cubic lattice, what is the ratio of...Ch. 21 - Prob. 21.30ECh. 21 - Prob. 21.31ECh. 21 - Consider Figure 21.21. If the lower rightmost...Ch. 21 - Prob. 21.33ECh. 21 - The aluminum-nickel alloy AlNi has a simple cubic...Ch. 21 - Prob. 21.35ECh. 21 - The first two signals from a powdered sample has X...Ch. 21 - Prob. 21.37ECh. 21 - Prob. 21.38ECh. 21 - Prob. 21.39ECh. 21 - Prob. 21.40ECh. 21 - Prob. 21.41ECh. 21 - Prob. 21.42ECh. 21 - Prob. 21.43ECh. 21 - Prob. 21.44ECh. 21 - Prob. 21.45ECh. 21 - What is the coordination number in the cesium...Ch. 21 - Prob. 21.47ECh. 21 - Which solid phase that is, which allotrope of...Ch. 21 - Prob. 21.49ECh. 21 - Prob. 21.50ECh. 21 - Write Born-Haber cycles showing the relationship...Ch. 21 - Prob. 21.52ECh. 21 - Prob. 21.53ECh. 21 - Prob. 21.54ECh. 21 - The lattice energy for potassium iodide, KI, is...Ch. 21 - Prob. 21.56ECh. 21 - Prob. 21.57ECh. 21 - Prob. 21.58ECh. 21 - Prob. 21.59ECh. 21 - Prob. 21.60ECh. 21 - Prob. 21.61ECh. 21 - Prob. 21.62ECh. 21 - Prob. 21.63ECh. 21 - Prob. 21.64E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What constitutes a lattice pointarrow_forwardIn a simple cubic lattice (based on a single element) with atoms at each point in the lattice and with a lattice constant a, what is the density of atoms (number per unit area) on a surface (100) .arrow_forwardm given the cube dimensions, latticearrow_forward
- Given the information below, calculate the lattice enthalpy for MX(s), where M is a group 1 metal, and X is a group 17 element (standard state: X2(g)). ΔfH°(MX) = -462 kJ mol−1 ΔsubH°(M) = 127 kJ mol−1 D(X2) = 442 kJ mol−1 IE1(M) = 480 kJ mol−1 Eeg1(X) = -142 kJ mol−1 Express your answer to four significant figures. ΔlattH°(MX) = Answer kJ mol−1arrow_forwardDolomite bricks are used in the linings of furnaces in the cement and steel industries. Pure dolomite contains 45.7% MgCO3 and 54.3% CaCO3 by mass. Determine the empirical formula of dolomite.arrow_forwardWhy are there no more than 7 crystal systems ? What are quasicrystals ?arrow_forward
- In XCI, which crystallizes in NaCl structure, the sum of the anionic and cationic radii is found to be 296 pm. The density of the compound is 4,591 g cm3. Calculate the mass of the cation as g mol! Do not write units, only enter numerical values. Use two digits at most for decimal numbers, use dot (.) as decimal separator (i.e. two-point-fifty-one should be entered as 2.51). Do not use comma (,) as decimal separator. Answer: 143.4arrow_forwardCollect the following data for the group 1 chlorides: ionic charge(Note: a positive charge has an exact value of 1.60 x 10-19 Coulombs), ionic radius, lattice enthalpy.arrow_forwardExplain and elaborate in 10 sentences the reason why non crystalline materials does not exhibit allotropy.arrow_forward
- a) Using electronegativity values, predict the type of bond expected between hydrogen and sulphur. b) Write the chemical formula for hydrogen sulphide. Show your workings. c) Would you expect the hydrogen sulphide molecule to be linear or non-linear in shape? Justify your answer. d) Hydrogen sulphide has a boiling point of 212.3 K and water has a boiling point of 373 K. Account for the difference in the boiling points of these substances. you expect hydrogen sulphide to be soluble in water? Explain your answer. e) Wouldarrow_forward.. Given that the crystal structure of Manganese iodide. It showed 21 bonds at 452 pm and 41 bonds at 227 pm. Discuss this observation using Jahn Teller Theory.arrow_forwardIs iodine monochloride in solid form conductive with respect to electrical conductivity? Why or why not?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning