Concept explainers
The definition of neutron stars.
The location from where the neutrons come from.
Answer to Problem 1Q
A neutron star is a small, highly dense star which consists of highly compacted neutrons.
The neutrons come by fusion of electron and protons in the core of the supernova.
Explanation of Solution
Introduction:
When the core of a supernova of Type II consists of extremely closely packed neutrons in their final stages and if the core remains, after blasting its outer layers back to interstellar space, it becomes a neutron star. It cannot be compressed further.
The highly compact neutron star has the density of an atomic nucleus and its size is very small. A neutron star has a powerful magnetic field and it rotates rapidly. Mass of a neutron star is less than
The core of massive a star above
The neutrinos emitted from the core taking remnants (gas and dust) during the collapsing of supernova leaving neutrons in the un-blasted core.
Want to see more full solutions like this?
Chapter 21 Solutions
Universe: Stars And Galaxies
- Where in the Galaxy would you expect to find Type II supernovae, which are the explosions of massive stars that go through their lives very quickly? Where would you expect to find Type I supernovae, which involve the explosions of white dwarfs?arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M. neutron star? From a 3.0 M. neutron star? (Hint: Use the formula for escape velocity, V̟ = V 2GM ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 x 1030 kg.) 1.1 M neutron star km/s 3.0 M. neutron star km/s If a neutron star has a radius of 12 km and a temperature of 8.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 x 1026 w.) luminosity in watts luminosity in solar luminosity unitsarrow_forwarda)What is a neutron star? B)How are they formed? C)Will our Sun become a neutron star? Why or why not?arrow_forward
- (Astronomy) Neutron Star Escape Velocity. What is the escape velocity at the surface of a 2.80-solar-mass neutron star that has a typical radius for this type of star? Express your answer in units of km/s.arrow_forwardan introduction on what are supermassive black holes?arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M. neutron star? From a 3.0 M, neutron star? (Hint: Use the formula for escape velocity, V̟ = 2GM -; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 × 1030 kg.) 1.1 M neutron star km/s 3.0 M. neutron star km/s If a neutron star has a radius of 12 km and a temperature of 8.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation . Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 x 1026 W.) luminosity in watts luminosity in solar luminosity units Loarrow_forward
- How does a white dwarf differ from a neutron star? How does each form? What keeps each from collapsing under its own weight?arrow_forwardWhat is the answer below if the radius of the neutron star is 29.894 km? (express your answer in the proper SI unit and without scientific notation) What is the average density of a neutron star that has the same mass as the sun but a radius of only 20.0 km?arrow_forwardWhich of the following is the most reasonable statement regarding a neutron star? Group of answer choices It consists mostly or entirely of neutrinos. The most common component of a neutron star is hydrogen. The star will turn into white dwarf. All its electrons have been combined with protons. It consists of neutrons and protons floating in a sea of electrons.arrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning