Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 33Q
To determine
The difference of the Doppler shift and the gravitational red shift.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does a gravitational red-shift differ from a Doppler red shift?
Why are gravitational waves so difficult to detect?
Which of the following statements about black holes are true? (select all that apply)
If you watch someone else fall into a black hole, you will never see him or her cross the event horizon. However, he or she will fade from view as the light he or she emits (or reflects) becomes more and more redshifted.
If you fell into a black hole, you would experience time to be running normally as you plunged rapidly across the event horizon.
If we watch a clock fall toward a black hole you will see it tick slower and slower as it falls nearer to the event horizon.
If the Sun magically disappeared and was replaced by a black hole of the same mass, Earth would soon be sucked into the black hole.
Chapter 21 Solutions
Universe: Stars And Galaxies
Ch. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10Q
Ch. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a person approaches the Schwarzschild radius fo a black hole, outside observers see all the processes of that person (their clocks, their heart rate, etc.) slowing down, and coming to a halst as they reach the Schwarzschild radius. (The person falling into the black hole sees their own processes unaffected.) But the speed of light is the same everywhere for all observers. What does this say about space as you approach the black hole?arrow_forwardDo the same calculations as in Exercise 23.42 but for a pulsar that rotates 1000 times per second.arrow_forwardAccording to a model described in the text, a neutron star has a radius of about 10 km. Assume that the pulses occur once per rotation. According to Einstein’s theory of relatively, nothing can move faster than the speed of light. Check to make sure that this pulsar model does not violate relativity. Calculate the rotation speed of the Crab Nebula pulsar at its equator, given its period of 0.033 s. (Remember that distance equals velocitytime and that the circumference of a circle is given by 2pR).arrow_forward
- What characteristics must a binary star have to be a good candidate for a black hole? Why is each of these characteristics important?arrow_forwardA stellar black hole may form when a massive star dies. The mass of the star collapses down to a single point. Imagine an astronaut orbiting a black hole having eight times the mass of the Sun. Assume the orbit is circular. a. Find the speed of the astronaut if his orbital radius is r = 1 AU. b. Find his speed if his orbital radius is r = 11.8 km. c. CHECK and THINK: Compare your answers to the speed of light in a vacuum. What would the astronauts orbital speed be if his orbital radius were smaller than 11.8 km?arrow_forwardDoes observed gravitational lensing correspond to a converging or diverging lens? Explain briefly.arrow_forward
- What’s the history behind gravitational waves?arrow_forward8arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forward
- Why are gravitational waves hard to detect and is there a way to simplify the process? How?arrow_forwardWhat indicates that the gravitational wave originated from the merger of a black hole?arrow_forwardTwo students in a science club argue with each other regarding the concept of Redshift. The statements made by the students are given as follows: Student 1: When the absorption maxima shift towards longer wavelengths then it is called the Redshift. Student 2: The decrease in wavelength due to the Doppler effect is known as the Redshift. Which of the above statement/s is/are correct? (a) Both student 1 and student 2 are true. (b) Only student 1 is true. (c) Only student 2 is true. (d) Both student 1 and student 2 are false.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning