Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 37Q
To determine
The time after which the two stars will collide.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
velocity curve for a double line
spectroscopic binary is shown in the sketch.
The system is viewed edge-on, i.e., with an
inclination angle of i 90°, so that the
maximum possible Doppler shifts for this
system are observed.
400
SPo
= , Ain i
300
200
l0o = v Ain i
100
-100
-200
-300
400
0 1 2 3 4
10
Time (days)
Find the speed of star 2 in km/s.
Doppler Velocity
(2esu)
A star with mass m, period Ti = 30 days, and radius ri = 1E4 km collapses into a neutron star (Links to an external site.) with a radius of rf = 3 km. Our goal will be to determine the period Tf of the neutron star. Useful formulae: Li=Lf; L=Iω; ω=2πf=2π/T; Isphere=2/5mr^2.
1.How much angular momentum Li does the star have before it collapses?
2. What is the rotation rate ωi of the star before collapsing?
3. Suppose we model the star as a solid sphere of radius ri with moment of inertia 2/5mri2 (a good assumption). What does our description of Li read now?
4.How much angular momentum Lf does the star have after it collapses?
5. What is the rotation rate ωf of the star after collapsing?
6.The new object, a neutron star, is also shaped like a sphere. What does Lf read?
Group of answer choices
7.Assuming angular momentum is conserved during collapse (also a good assumption), what is our prediction for the period of the neutron star, Tf?
8. What is Tf in units of days?
9. What…
a double line
The velocity curve for
spectroscopic binary is shown in the sketch.
The system is viewed edge-on, i.e., with an
inclination angle of i = 90°, so that the
maximum possible Doppler shifts for this
system are observed.
400
U, Aini
300
200
oo - v Ain i
100
-100
-200
-300
400
o 1 2 3 +s 7 8
10
Time (daye)
Find the orbital period of this binary in days.
Doppler Velocity
(2esun)
Chapter 21 Solutions
Universe: Stars And Galaxies
Ch. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10Q
Ch. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the escape velocity Vesc of a 1.4M⊙ neutron star if its radius is 12 km? Express your answer as a multiple of the speed of light (i.e., compute Vesc/c, where c= 2.9979 x 105 km/s). [Hint: you will need to recall the formula for escape speed from the surface of an object. This was discussed when we covered planetary atmospheres.]arrow_forwardA star with mass m, period Ti = 30 days, and radius ri = 1E4 km collapses into a neutron star (Links to an external site.) with a radius of rf = 3 km. Our goal will be to determine the period Tf of the neutron star. Useful formulae: Li=Lf; L=Iω; ω=2πf=2π/T; Isphere=2/5mr^2.arrow_forwardvelocity curve for a double line spectroscopic binary is shown in the sketch. The system is viewed edge-on, i.e., with an inclination angle of i = 90°, so that the maximum possible Doppler shifts for this system are observed. 400 300 So = U, Ani 200 t0 = v Ain i 100 -100 -200 -300 400 O 1 2 3 1 s 1 8: 10 Time (days) Find the orbital period of this binary in days. Doppler Velocity (krn/sec)arrow_forward
- A star has initially a radius of 660000000 m and a period of rotation about its axis of 34 days. Eventually it changes into a neutron star with a radius of only 35000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 5.22E+15 Ob. 24.2 Oc. 0.0413 Od. 1.91E-16 (b) the ratio of initial to final kinetic energy Oa. 1.3E-23 Activate V Go to Setting Ob. 607000 Oc. 1.65E-6 e here to searcharrow_forwardA star has initially a radius of 640000000 m and a period of rotation about its axis of 20 days. Eventually it changes into a neutron star with a radius of only 50000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 1.42E+15 Ob. 19 Oc. 0.0527 Od. 7.06E-16 (b) the ratio of initial to final kinetic energy Oa. 8.18E-23 Ob. 456000 Oc. 2.19E-6 Od. 1.22E+22 52%arrow_forwardA star has initially a radius of 780000000 m and a period of rotation about its axis of 22 days. Eventually it changes into a neutron star with a radius of only 25000 m and a period of 0.1 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) a. 1.85E+16 b. 51.2 c. 0.0195 d. 5.4E-17 (b) the ratio of initial to final kinetic energy a. 2.84E-24 b. 371000 c. 2.69E-6 d. 3.52E+23arrow_forward
- A star has initially a radius of 680000000 m and a period of rotation about its axis of 26 days. Eventually it changes into a neutron star with a radius of only 40000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 3.25E+15 Ob. 25.7 Oc. 0.0389 Od. 3.08E-16 (b) the ratio of initial to final kinetic energy Oa. 2.74E-23 Ob. 437000 Cc. 2.29E-6 FUJITSUarrow_forwardA visual binary has a parallax of 0.4 arcseconds, a maximum separation a = 6.0 arcseconds, and an orbital period P = 80 years. What is the total mass of the binary system in units of Mo, assuming a circular orbit?arrow_forwardProblem Set on Binary Systems: 1.Consider two stars in orbit about a mutual center of mass. If a1 is the semimajor axis of the orbit of star of mass m, and a, is the semimajor axis of the orbit of star of mass m2, prove that the semimajor axis of the orbit of the reduced mass is given by a = a, + a2. points)arrow_forward
- Q1 (oints): A0620-00 is an X-ray binary system, there is a normal star and a compact object. For the normal star the radial orbital velocity is 457 km s and for the compact object it is 43 km s1.They have an orbital period of 0.3226 day. Calculate the mass function.arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forwardwhat is the answer for sub-item (b) if the radius of the neutron star is 90.651 km? (express your answer in the proper SI unit and without scientific notation)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax