Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 14Q
To determine
To describe:
The way stars would appear to move in the sky if the observer is standing at one of the magnetic poles of the Crab Nebula.
The observation done if the observer looks straight up while standing at one of the magnetic poles of the Crab Nebula.
The factors, which make the location, a very unhealthy place to visit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine that you are observing the light from a distant star that is located in a galaxy 100 million lightyears
away from you. By analysis of the starlight received, you are able to tell that the image we see is of a 10-
million-year-old star. You are also able to predict that the star will have a total lifetime of 50 million years, at
which point it will end in a catastrophic supernova.
a) How old does the star appear to be to us here on Earth now?
b) How long will it be before we receive the light from the supernova event?
c) Has the supernova already occurred? If so, when did it occur?
The figure below shows the spectra of two galaxies A and B.
1. If a star has a surface temperature of 3000 K but a luminosity 150 times greater than our Sun, what size is this star? Give your answer in units of the solar radius.
2. At what wavelengths do stars of surface temperates 20 000 K, 10 000 K, and 3000 K have their peak intensity?
3. If the Hα absorption line in the spectrum of a galaxy is observed at a wavelength of 6715 ˚A, at what speed is the galaxy moving away from us?
Chapter 21 Solutions
Universe: Stars And Galaxies
Ch. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10Q
Ch. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- helparrow_forwardBlack Hole Accretion Disk. Part A: If the inner accretion disk around a black hole has a temperature of 1,000,000 K, at what wavelength will it radiate the most energy? Express your answer in units of nm. Part B: What part of the spectrum is this in?arrow_forwardAstronomers us the P-Cygni line features in a spectrum of a supernova to... Select one alternative: ...measure the velocity of the supernova ejecta. ...to measure the rotation speed of the star that exploded. ...measure the composition of the supernova ejecta more accurately than with other lines. ...to measure the mass of the neutron star or black hole formed in the supernova.arrow_forward
- Please tell me correct option with proper explanation.arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forwardAre the galaxies red-shifting or blue-shifting? Explain. (You may find the big-bang theory helpful). Andromeda galaxy is currently approaching our galaxy with a radial velocity of 266 km/sec. How far is our galaxy from Andromeda? (Hubble’s constant, H, is 73 km/sec/MParsec). When can the two galaxies be anticipated to collide?arrow_forward
- Question A1 a) The Large Magellanic Cloud (LMC) is a galaxy in the vicinity of the Milky Way. It is at a distance of 50 kpc, and has a size across of 9.86 kpc. Consider a star similar to Vega (absolute magnitude M = 0.58) which is at the edge of the LMC as seen on the sky. What is its apparent magnitude? Show your calculation. b) A second similar star is observed near the centre of the LMC as seen on the sky with an observed apparent magnitude of m = 20.3. Is this consistent with the star being a member of the LMC? Explain your reasoning. c) An observational study has derived a map of the extinction Ay across the LMC, and shown that its average value is 0.38, with a standard deviation of 0.57. For the star discussed in part (b), if extinction is taken into account, does your conclusion about the star's membership of the LMC change? Explain your reasoning. You may assume that the star may suffer the full (positive) range of extinction found in the study of the LMC. d) Which other…arrow_forwardCosmic Microwave Background 8. The Cosmic Microwave Background (CMB) acts as a perfect black body whose energy spectrum(energy density per unit volume per unit frequency) is given by the expression : (image attached)arrow_forwardConsider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forward
- The first clue that the Galaxy contains a lot of dark matter was the observation that the orbital velocities of stars did not decreases with increasing distance from the center of the Galaxy. Construct a rotation curve for the solar system by using the orbital velocities of the planets, which can be found in Appendix F. How does this curve differ from the rotation curve for the Galaxy? What does it tell you about where most of the mass in the solar system is concentrated?arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardHow much would you weigh if you were suddenly transported to the white dwarf Sirius B? You may use your own weight (or if don’t want to own up to what it is, assume you weigh 70 kg or 150 lb). In this case, assume that the companion to Sirius has a mass equal to that of the Sun and a radius equal to that of Earth. Remember Newton’s law of gravity: F=GM1M2/R2 and that your weight is proportional to the force that you feel. What kind of star should you travel to if you want to lose weight (and not gain it)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning