Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 34Q
To determine
The reason not to have some sort of undiscovered degenerated pressure yet which prevent the matter inside a black hole from collapsing all the way down to a singularity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the orbital period of a bit of matter in an accretion disk that is located 4 ✕ 105 km from a 87 M black hole? Use the circular orbit velocity formula.
The Schwarzschild radius of a certain black hole is 30n
kilometers. The
mass of this black hole, in units of solar masses, Mo, is given by
M x aMo
What is the value of a, if n = 5 (give only an integer value).
As a mass m of gas falls into a black hole, at most 0.1mc2 is likely to emerge as radiation; the rest is swallowed by the black hole. Show the Eddington luminosity for a black hole of mass M is equivalent to 2*10-9 Mc2yr-1. Explain why we expect the black hole's mass to grow by at least a factor of e every 5*107 years. Where Edding Luminicity is defined as LE=(4piGMmpc)/(sigmaT), where G is the gravitational constant, M is the mass of the black hole, mp is the mass of a proton, c is the speed of light, and sigmaT is Thomson scattering where sigmaT=6.653*10-25 cm2.
Chapter 21 Solutions
Universe: Stars And Galaxies
Ch. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10Q
Ch. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The next step in deciding whether the object in Exercise 25.25 is a black hole is to estimate the density of this mass. Assume that all of the mass is spread uniformly throughout a sphere with a radius of 20 lighthours. What is the density in kg/km3? (Remember that the volume of a sphere is given by V=43R3 .) Explain why the density might be even higher than the value you have calculated. How does this density compare with that of the Sun or other objects we have talked about in this book?arrow_forwardBlack holes radiate emission through Hawking radiation: (a) Calculate the luminosity (in W) of a 100 solar mass black hole? (b) Calculate the fractional differences in temperature and luminosity between a 100 and 10 solar mass black hole? (c) Calculate the mass of a black hole which has peak radiation at optical wavelength (500 nm)?arrow_forwardWhich of the following statements best describes the behaviour of an object falling towards the Event Horizon of a Black Hole (according to an observer a long way from it)? As gravity increases the falling object will not suffer any change in appearence or the progression of time. As gravity increases the object's light will be compressed, leading to it looking bluer, with time appearing to passing more slowly for it. The falling object will appear to experience an increase in the rate of time, and it's colour will appear evermore red. As the falling object experiences ever stronger gravity, it will become redder and time will appear to pass more slowly for it.arrow_forward
- You discover by dropping particles into it that the Event Horizon (Schwartzschild Radius) of a black hole is 171 km. How massive is it? (enter just the number in solar masses)arrow_forward6arrow_forwardI'm stumped on this question: A clump of matter does not need to be extraordinarily dense in order to have an escape velocity greater than the speed of light, as long as its mass is large enough. You can use the formula for the Schwarzschild radius RS to calculate the volume, 4/3 πRS^3, inside the event horizon of a black hole of mass M. What does the mass of a black hole need to be in order for its mass divided by its volume to be equal to the density of water (1g/cm^3)? I'm not sure where to begin in findng the answer. It feels as if I'm missing information.arrow_forward
- Advanced Physics Questionarrow_forwardfor 14 i observed the galaxy end aroung 5 kpc. I need help with 18arrow_forwardI understand that to an outside observer, the light from a star that is collapsing into a black hole will become more and more red-shifted as the surface of the star appears to approach the black hole event horizon. The outside observer will never actually see the surface of the star cross the black hole event horizon. This applies to all outside observers: at infinity, in orbit around the star/black hole or those using a rocket to hover above the black hole. Conversely, I know that for someone on the surface of the star that is collapsing to form a black hole it will appear quite different. The observer on the surface will not see anything unusual happen as they cross the event horizon and in a finite time they will reach the singularity at the center of the black hole where we do not know what will happen since general relativity breaks down in a singularity. So, now consider an observer that starts at a great distance from the star who is continually falling directly into the star…arrow_forward
- The most distant quasar is "J0313-1806". Its redshift is z = 7.64. [ z = (femitted - fobserved)/ fobserved] Assume that the redshift is due to relative motion. Then how fast is the quasar moving away from Earth? (speed as the fraction of c = ) | .704 According to Hubble's Law, the distance (r) depends on the speed of recession (v) according to v = Hor where Ho~ 20km/s Mly How many years are required for light to travel from the quasar to Earth? (years = )arrow_forwardAssuming that hydrogen fusion requires the Universe to have a temperature of T > 10' K (as measured by the CMB), determine the redshift at which the fusion of hydrogen into helium was just possible as the Universe expanded and cooled. Choose the option below that most closely matches your answer. Select one: Оа. 4000.87 b. 3669723.77 О с 2229723.71 O d. 9748293.14 O e. 4669723.16arrow_forwardSuppose an alien race on a distant planet tries to send a message to us, with a laser (light). However, we were unaware that there is a stellar-mass black hole almost directly between us and them. How would this complicate our attempts to locate their position in the Galaxy? O Gravitational lensing would make the signal appear to be coming from a different location O The information carried by the laser (light) would be altered O It would not matter The black hole absorbs all of the lightarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning