
Concept explainers
Figure 21-11 shows (1) four situations in which five charged particles are evenly spaced along an axis. The charge values are indicated except for the central particle, which has the same charge in all four situations. Rank the situations according to the magnitude of the net electrostatic force or the central particle, greatest first.
Figure 21-11 Question 1.

To rank:
The situations according to the magnitude of net electrostatic force exerted on the central particle by four given particles.
Answer to Problem 1Q
Solution:
Rank based on net electrostatic force is F3>F1>F2>F4
Explanation of Solution
1) Concept:
The net force acting on a particle due to more than one particle is the sum of forces exerted by each of the particles.
2) Formulae:
Electrostatic force between two charges q1 and q2,
k- Coulomb’s constant constant=8.99 x 109
d- distance of separation between particles.
3) Given:
a. The five particles are evenly spaced on an axis.
b. The charges on four particles are given except for the central particle.
Situation 1: Charges on right side = -e, -e Charges on left side =-+e, -e
Situation 2: Charges on right side = +e, +e Charges on left side =+e, -e
Situation 3: Charges on right side = -e, -e Charges on left side =+e, +e
Situation 4: Charges on right side = -e, +e Charges on left side =+e, -e
c. The central particle has same charge in all the 4 situations.
4) Calculation:
Let us consider that each of the particles is located at d distance apart.
Let us consider that the central particle has a charge +e.
According to Coulomb’s law, the magnitude of force F acting on the central particle due to the particles at distance d is,
Situation 1:
In the situation 1, the free body diagram of force acting on central particle, due to other particles is drawn as shown below.
![]() |
||||||||||||||||
|
|
|
|
|
The particles located at distance 2d on either side, exert equal and opposite forces on the central particle. So they nullify each other’s effect on the central particle. Meanwhile, the particles at distance d exert equal forces towards the same direction, and hence the exerted forces add up to 2F.
Hence net force, F1= 2F
Situation 2:
![]() |
||||||||||||||||
|
|
|
|
|
Force exerted by particles at distance d on either side nullifies each other. Hence, the net force on the central particle due to the particles at 2d distance,
F2 =
=
=
Situation 3:
![]() |
||||||||||||||||
|
|
|
|
|
Here the particles at distance ‘d’ exert equal force on same direction as in situation 1. Hence the force exerted by these particles on central particle is 2F. The particles that are at 2d distance on either sides again exert same force in same direction as in situation 2. Hence the force exerted by them on central particle is 0.5F.
Net force, F3= F1+F2 = 2F +0.5 F = 2.5 F
Situation 4:
![]() |
||||||||||||||||
|
|
|
|
|
Here the particles at distance ‘2d’ nullifies each other’s effect and also that are at distance ‘d’ again cancel the force exerted by each other. Therefore, the net force acting on the particle is zero.
Net force, F4=0
Conclusion:
We can find net electrostatic force acting on a particle by knowing the magnitude and direction of the forces exerted by each of the particles present in the system.
Want to see more full solutions like this?
Chapter 21 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Campbell Biology (11th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry & Chemical Reactivity
Organic Chemistry (8th Edition)
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





