
Concept explainers
(a)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(a)

Answer to Problem 14PS
The complete balanced equation for the reaction of potassium and iodine is:
Explanation of Solution
Potassium belongs to group
This electron is gained by iodine to form an anion with one negative charge. Iodine belongs to halogen family and it has the oxidation number of
The number of electrons in both the equations is same. Thus an ionic compound is formed in which potassium has
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation Since iodine is present as
Thus, the overall balanced equation is:
(b)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(b)

Answer to Problem 14PS
The complete balanced equation for the reaction of barium and oxygen is:
Explanation of Solution
Barium belongs to group
These two electrons are gained by the oxygen leading to the formation of an ionic compound. Oxygen belongs to the sulfur family and exists in -2 oxidation number.
The number of electrons in both the equations is same. Barium has a charge of
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since oxygen is present as
Thus, the overall balanced equation is:
(c)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(c)

Answer to Problem 14PS
The complete balanced equation for the reaction of aluminium with sulfur is:
Explanation of Solution
Aluminium belongs to group
Sulphur belongs to oxygen family and exists in -2 oxidation number. These two electrons are gained by the sulphur leading to the formation of a product compound.
The numbers of electrons are not same in both the equations. Aluminium bear charge and sulfur bears
The
Thus, the overall balanced equation is:
(d)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(d)

Answer to Problem 14PS
The complete balanced equation for the reaction of silicon with chlorine is:
Explanation of Solution
Silicon belongs to group
The electronegativity difference between silicon and chlorine is less than
The stoichiometric coefficients are multiplied with species to have equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since chlorine is present as
Thus, the overall balanced equation is:
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry & Chemical Reactivity
- personality of each of them in terms of nucleophile vs. electrophile (some can be considered acids/bases but we are not looking at that here). Note you may have to use your growing intuition to figure out the personality of one of the molecules below but I believe in you! Rationalize it out based on what we have called strong versus weak electrophiles in past mechanisms. Consider using the memes below to help guide your understanding! A OH O B CH3 C Molecule A: [Select] Molecule B: [Select] Molecule C: [Select] Molecule D: [Select] > H D OHarrow_forward4) Which oxygen atom in the structure below is most basic / nucleophilic? Please explain by discussing the electron density around each oxygen atom. Show at least three resonance structures for the compound. оогоarrow_forwardCan you show me this problem. Turn them into lewis dot structures for me please and then answer the question because I cant seem to comprehend it/ The diagrams on the picture look too small I guess.arrow_forward
- The fire releases 2.80 x 107 Joules of heat energy for each liter of oil burned. The water starts out at 24.5 °C, raising the water's temperature up to 100 °C, and then raises the temperature of the resulting steam up to 325 °C. How many liters of water will be needed to absorb the heat from the fire in this way, for each 1.0 liter of crude oil burned? 4186 J/(kg°C) = heat of water 2020 J/(kg°C) = heat of steam 2,256,000 (i.e. 2.256 x 106) J/kg = latent heat of vaporization for water (at the boiling point of 100 °C).arrow_forward6 Which of the following are likely to be significant resonance structures of a resonance hybrid? Draw another resonance structure for each of the compounds you select as being a resonance form. (A Br: Br: A B C D Earrow_forwardWrite the systematic (IUPAC) name for the following organic molecules. Note for advanced students: you do not need to include any E or Z prefixes in your names. Br structure Br Br Oweuarrow_forward
- Conservation of mass was discussed in the background. Describe how conservation of mass (actual, not theoretical) could be checked in the experiment performed.arrow_forwardWhat impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attachedarrow_forwardGiven that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield. Results are attached form experimentarrow_forward
- 5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that: (from Box 5.1, pg. 88 of your text): Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturated What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?arrow_forwardFind a molecular formula for these unknownsarrow_forward(ME EX2) Prblms 8-11 Can you please explain problems 8 -11 to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax


