Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 102SCQ
Interpretation Introduction
Interpretation: Lewis structure of the boric acid and the hybridization of the boron atom in boric acid to be determined, in addition to that hydrogen bonding of the molecule are to be explained
Concept introduction:
- a) Lewis structure: Lewis structure of the compound is a structure, which describes the structure with all the bonds and the lone pair electrons present in the molecule.
- b) Hybridization: hybridization is a concept of mixing atomic orbitals, which is useful in explaining the geometry and the structure of the molecule.
- c) Hydrogen bonding: hydrogen bond is a bond between more electronegative atoms (like N, O, and F, etc.) and the hydrogen atom, which is connected to more electronegative atom of the other molecule.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Borane (BH3) is unstable under normal conditions, but it has been detected at lowpressure.(a) Draw the Lewis structure for borane.(b) Draw a diagram of the bonding in BH3, and label the hybridization of each orbital.(c) Predict the H¬B¬H bond angle
Give the hybridization of the metalloid and the molecular geometry for each of the following compounds or ions. (a) GeH4(b) SbF3(c) Te(OH)6(d) H2Te(e) GeF2(f) TeCl4(g) SiF62−(h) SbCl5(i) TeF6
H2CO molecules
(a) use orbital hybridization theory to determine the molecular shape of h2co.
(b) what bonds are formed between the c and o atoms in formaldehyde molecules?
Chapter 21 Solutions
Chemistry & Chemical Reactivity
Ch. 21.2 - Prob. 1CYUCh. 21.2 - Write the formula for each of the following (a)...Ch. 21.2 - Prob. 3CYUCh. 21.2 - Prob. 4CYUCh. 21.4 - Prob. 3RCCh. 21.5 - Prob. 1QCh. 21.5 - Prob. 2QCh. 21.8 - Prob. 1QCh. 21.8 - Prob. 2QCh. 21.8 - Prob. 3Q
Ch. 21.8 - Prob. 4QCh. 21.8 - Prob. 3RCCh. 21.11 - Prob. 1QCh. 21.11 - Prob. 2QCh. 21 - Give examples of two basic oxides. Write equations...Ch. 21 - Prob. 2PSCh. 21 - Prob. 3PSCh. 21 - Prob. 4PSCh. 21 - Prob. 5PSCh. 21 - Prob. 6PSCh. 21 - For the product of the reaction you selected in...Ch. 21 - For the product of the reaction you selected in...Ch. 21 - Prob. 9PSCh. 21 - Prob. 10PSCh. 21 - Place the following oxides in order of increasing...Ch. 21 - Place the following oxides in order of increasing...Ch. 21 - Prob. 13PSCh. 21 - Prob. 14PSCh. 21 - Prob. 15PSCh. 21 - Prob. 16PSCh. 21 - Prob. 17PSCh. 21 - Prob. 18PSCh. 21 - Prob. 19PSCh. 21 - Prob. 20PSCh. 21 - Prob. 21PSCh. 21 - Write balanced equations for the reaction of...Ch. 21 - Prob. 23PSCh. 21 - (a) Write equations for the half-reactions that...Ch. 21 - When magnesium bums in air, it forms both an oxide...Ch. 21 - Prob. 26PSCh. 21 - Prob. 27PSCh. 21 - Prob. 28PSCh. 21 - Calcium oxide, CaO, is used to remove SO2 from...Ch. 21 - Prob. 30PSCh. 21 - Prob. 31PSCh. 21 - The boron trihalides (except BF3) hydrolyze...Ch. 21 - When boron hydrides burn in air, the reactions are...Ch. 21 - Prob. 34PSCh. 21 - Write balanced equations for the reactions of...Ch. 21 - Prob. 36PSCh. 21 - Prob. 37PSCh. 21 - Alumina, Al2O3, is amphoteric. Among examples of...Ch. 21 - Prob. 39PSCh. 21 - Prob. 40PSCh. 21 - Describe the structure of pyroxenes (see page...Ch. 21 - Describe how ultrapure silicon can be produced...Ch. 21 - Prob. 43PSCh. 21 - Prob. 44PSCh. 21 - Prob. 45PSCh. 21 - Prob. 46PSCh. 21 - Prob. 47PSCh. 21 - The overall reaction involved in the industrial...Ch. 21 - Prob. 49PSCh. 21 - Prob. 50PSCh. 21 - Prob. 51PSCh. 21 - Prob. 52PSCh. 21 - Prob. 53PSCh. 21 - Prob. 54PSCh. 21 - Prob. 55PSCh. 21 - Sulfur forms a range of compounds with fluorine....Ch. 21 - The halogen oxides and oxoanions are good...Ch. 21 - Prob. 58PSCh. 21 - Bromine is obtained from brine wells. The process...Ch. 21 - Prob. 60PSCh. 21 - Prob. 61PSCh. 21 - Halogens combine with one another to produce...Ch. 21 - The standard enthalpy of formation of XeF4 is 218...Ch. 21 - Draw the Lewis electron dot structure for XeO3F2....Ch. 21 - Prob. 65PSCh. 21 - Prob. 66PSCh. 21 - Prob. 67GQCh. 21 - Prob. 68GQCh. 21 - Consider the chemistries of the elements...Ch. 21 - When BCl3 gas is passed through an electric...Ch. 21 - Prob. 71GQCh. 21 - Prob. 72GQCh. 21 - Prob. 73GQCh. 21 - Prob. 74GQCh. 21 - Prob. 75GQCh. 21 - Prob. 76GQCh. 21 - Prob. 77GQCh. 21 - Prob. 78GQCh. 21 - Prob. 79GQCh. 21 - Prob. 80GQCh. 21 - Prob. 81GQCh. 21 - Prob. 83GQCh. 21 - Prob. 84GQCh. 21 - A Boron and hydrogen form an extensive family of...Ch. 21 - In 1774, C. Scheele obtained a gas by reacting...Ch. 21 - What current must be used in a Downs cell...Ch. 21 - The chemistry of gallium: (a) Gallium hydroxide,...Ch. 21 - Prob. 89GQCh. 21 - Prob. 90GQCh. 21 - Prob. 91GQCh. 21 - Prob. 92GQCh. 21 - Prob. 93ILCh. 21 - Prob. 94ILCh. 21 - Prob. 95ILCh. 21 - Prob. 96ILCh. 21 - Prob. 97ILCh. 21 - Prob. 98ILCh. 21 - Prob. 99SCQCh. 21 - Prob. 100SCQCh. 21 - Prob. 101SCQCh. 21 - Prob. 102SCQCh. 21 - Prob. 103SCQCh. 21 - Prob. 104SCQCh. 21 - Prob. 105SCQCh. 21 - Prob. 106SCQCh. 21 - Prob. 107SCQCh. 21 - Prob. 108SCQCh. 21 - Prob. 109SCQCh. 21 - Prob. 110SCQCh. 21 - Comparing the chemistry of carbon and silicon. (a)...Ch. 21 - Prob. 112SCQCh. 21 - Xenon trioxide, XeO3, reacts with aqueous base to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the reaction BF3 + NH3 -> F3B-NH3 (a) Describe the changes in hybridization of the B and N atoms as a result of this reaction. (b) Describe the shapes of all the reactant molecules with their bond angles. (c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms. (d) What is the name of the bond between B and N. (e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.arrow_forwardA useful solvent that will dissolve salts as well as organic compounds is the compound acetonitrile, H3CCN. It is present in paint strippers.(a) Write the Lewis structure for acetonitrile, and indicate the direction of the dipole moment in the molecule.(b) Identify the hybrid orbitals used by the carbon atoms in the molecule to form σ bonds.(c) Describe the atomic orbitals that form the π bonds in the molecule. Note that it is not necessary to hybridize the nitrogen atom.arrow_forwardConsider the SCl2 molecule. (a) What is the electron configuration of an isolated S atom? (b) What is the electron configuration of an isolated Cl atom? (c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl2 ? (d) What valence orbitals if any, remain unhybridized on the S atom in SCL2 ?arrow_forward
- (a) For which of the following molecules and ions does the central atom have sp hybridization: NO 2 +, O 3, and I 3 –? (b) There are __________ ó bonds and __________ ð bonds in . A. 10, 3B. 13, 2C. 12, 2D. 16, 3E. 14, 2 (c) Use the bond enthalpies tabulated below to estimate the enthalpy of formation of H 2O(g). H 2(g) + 1/2 O 2(g) --> H 2O(g)arrow_forwardFor each of the following molecule: (i) draw the correct Lewis structure; (ii) determine the molecular geometry and the type of hybridization on the central atom, and (iii) predict whether the molecule is polar or nonpolar. (a) BrCl5arrow_forwardThe structure of caffeine is shown below. (a) Complete the Lewis structure. (b) How many pi bonds are present in caffeine? How many sigma bonds? (c) Identify the hybridization of the carbon atoms. (d) What is the value of the O-C-N angle?arrow_forward
- What is the state of hybridization of boron and oxygen atoms in boric acid?arrow_forwardAmmonia, NH3, reacts with incredibly strong bases to producethe amide ion, NH2-. Ammonia can also react with acidsto produce the ammonium ion, NH4+. (a) Which species(amide ion, ammonia, or ammonium ion) has the largestH¬N¬H bond angle? (b) Which species has the smallestH¬N¬H bond angle?arrow_forwardA می 5. (a) Describe the location of the bonding electrons in solids that have (A) ionic, (B) covalent, and (C) metallic bonding. (b) Using the periodic table, calculate the percent ionic character of the interatomic bonds for the material CsCl. (c) Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride (HCl) (19.4 vs. −85 °C), even though HF has a lower molecular weight.arrow_forward
- Valence bond theory The skeletal structure for methyleneimine (CH₂NH) is shown. Draw for yourself the best Lewis structure. Propose a bonding scheme by indicating the hybridization of the central atoms and the orbital overlaps for each bond. (a) H one (b) H-C-N-H The bond labeled (a) forms from The bond labeled (b) forms from: ● one o-overlap of a C (c) π-overlap (s) of a C -overlap of a C sp2 orbital and a N orbital and a N orbital and a H 1s The ideal bond angle <(C-N-H) around the N atom is orbital, and orbital. The bond labeled (c) forms from O - overlap of a N There is/are one lone pair(s) around the N atom. Lewis structures do not attempt to portray 3D shape, but you can predict the molecular geometry from VSEPR theory. The ideal bond angle <(H-C-H) around the C atom is 120 orbital and a H 1s degrees. orbital. degrees. orbital.arrow_forwardThe valuable polymer polyurethane is made by a condensationreaction of alcohols (ROH) with compounds that containan isocyanate group (RNCO). Two reactions that cangenerate a urethane monomer are shown here: (a) Which process, i or ii, is greener? Explain.(b) What are the hybridization and geometry of the carbonatoms in each C-containing compound in each reaction?(c) If you wanted to promote the formation of the isocyanateintermediate in each reaction, what could you do,using Le Châtelier’s principle?arrow_forward. Assume that the third-period element phosphorus forms a diatomic molecule, P2, in an analogous way as nitrogen does to form N2. (a) Write the electronic configuration for P2. Use [Ne2] to represent the electron configuration for the first two periods. (b) Calculate its bond order. (c) What are its magnetic properties (diamagnetic or paramagnetic)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY