Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem D2.56P
To determine
The closed-loop gain, value of shunted resistor to get nominal gain and closed loop-gain in given cases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
By using only two op-amps, design a circuit that can perform the following operation:
Vo ==
Also, evaluate the given circuit equation. Show all the assumptions, calculation and the
circuit illustration.
Marking Scheme:
Circuit Design
Assumptions
Calculation
Q2) Why is there a difference between the theoretical
and practical values of voltage gain in an inverting and
non-inverting Op amplifier?
Figure Q2(a) shows an amplifier system with the given input voltagewaveform Vin and the corresponding output voltage waveform Vout.
If a practical op-amp is used in the amplifier system in Figure Q2(a),calculate the closed-loop gain, ACL given that the open-loop gain, AOL =3000. You can use the value of resistances found in Q2(a)(i).
Chapter 2 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 2.1 - Prob. 2.1ECh. 2.1 - Prob. 2.2ECh. 2.1 - Prob. 2.3ECh. 2.2 - Prob. D2.4ECh. 2.2 - Prob. 2.5ECh. 2.2 - Prob. 2.6ECh. 2.2 - Prob. D2.7ECh. 2.2 - Prob. D2.8ECh. 2.3 - Prob. 2.9ECh. 2.3 - Prob. 2.10E
Ch. 2.3 - Prob. D2.11ECh. 2.3 - Prob. 2.12ECh. 2.3 - Prob. 2.13ECh. 2.3 - Prob. 2.14ECh. 2.4 - Prob. 2.15ECh. 2.4 - Prob. D2.16ECh. 2.4 - Prob. 2.17ECh. 2.5 - Prob. 2.18ECh. 2.5 - Prob. D2.19ECh. 2.5 - Prob. D2.20ECh. 2.6 - Prob. 2.21ECh. 2.6 - Prob. 2.22ECh. 2.6 - Prob. 2.23ECh. 2.6 - Prob. 2.24ECh. 2.6 - Prob. 2.25ECh. 2.7 - Prob. 2.26ECh. 2.7 - Prob. 2.27ECh. 2.7 - Prob. 2.28ECh. 2.8 - Prob. 2.29ECh. 2.8 - Prob. 2.30ECh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. D2.12PCh. 2 - Prob. D2.13PCh. 2 - Prob. D2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. D2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. D2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. D2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. D2.33PCh. 2 - Prob. D2.34PCh. 2 - Prob. D2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. D2.37PCh. 2 - Prob. D2.38PCh. 2 - Prob. D2.39PCh. 2 - Prob. D2.40PCh. 2 - Prob. D2.41PCh. 2 - Prob. D2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. D2.44PCh. 2 - Prob. D2.45PCh. 2 - Prob. D2.46PCh. 2 - Prob. D2.47PCh. 2 - Prob. D2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. D2.51PCh. 2 - Prob. D2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. D2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. D2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. D2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. D2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. D2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. D2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. D2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. D2.82PCh. 2 - Prob. D2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. D2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. D2.92PCh. 2 - Prob. D2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. D2.99PCh. 2 - Prob. D2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. D2.116PCh. 2 - Prob. D2.117PCh. 2 - Prob. D2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. D2.127P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Figure Q2(a) shows an amplifier system with the given input voltagewaveform Vin and the corresponding output voltage waveform Vout. Predict what will happen to the output voltage waveform if the op-ampis given a voltage supply of VCC = +14 V and VEE = -14 V.arrow_forwardDraw an op amp symbol including sources to account for offset voltage, offset current, and bias current. What is the principal effect of these sources in an amplifier circuit?arrow_forward(c) (d) Figure Figure Q1b shows an Op-amp with a bias current compensating resistor (Rp). R₁ V₂. Vp IB. R₂ W A • V₂ Figure Olb (i) Derive an expression for V. to quantify the effect of bias currents IB+ and IB-. [3] (ii) Explain how you would choose a value for Rp to reduce the output error due to the bias currents, IB+ and IB.. [3] Referring to an op-amp define what is meant by common-mode rejection ratio (CMRR) and explain the effect a finite CMRR would have on high-precision applications. [4] Page 2 of 7 Continued overleafarrow_forward
- 1) Op-amp limiting factors - Current Saturation U2 Vin R1 OUT OPAMP R2 RLoad The saturation output current for the above op-amp is +/- 15mA. For the following input signals, determine if the output appears as would be expected in an ideal circuit. Include sketches of the output voltage. a) R1 = 100, R2 = 900, an open circuit load, and Vin is 2Vpp triangle wave with zero offset voltage (Vmax 1V, Vmin = -1V) and a period of 2ms. b) R1 = 100, R2 = 900, a 1k load, and Vin is 2Vpp triangle wave with a 1V offset voltage (Vmax=2V, Vmin = 0V) and a period of 2ms. c) R1 = 100, R2 = 900, an open circuit load, and Vin is 4Vpp triangle wave with zero offset voltage (Vmax=2V, Vmin = -2V) and a period of 2ms.arrow_forwardSuggest a simple op-amp cct to build a Negative Resistor. In other words the resistor seen from the input side is equal to (-R).arrow_forwardDesign and draw an inverting op amp with gain -10V/V . What is the input resistance of this op-amp?arrow_forward
- For an op-amp having a slew rate SR=5V/ms, what is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.2V in 10ms?arrow_forwardFigure 6 (a) shows the circuit diagram for a differential amphfier. You may assume that M and M, have identical parameters. Referring to Figure 6 (a): (a) What kind of amplifier is it? What is its role in a three-stage op amp? Draw the small signal equivalent eircuit and derive the differential voltage gain Aag. For the analysis consider RDI RD2 >>Rp State any assumption. (b) RD. gml gm gm, and r re=r What is the new Adr in the circuit of Figure 6 (b), where a PMOS current source has replaced the two drain resistors Ror R Rp and a NMOS current sink has replaced the source resistor Rs? (c) What are the advantages in using the circuit of Figure 6 (b) instead of Figure 6 (a) to realize an op amp? (d) Ven Ms Mg Rp1 Rpa Vo HM, My M Ma M3 Vss 0 V Vss 0 V Figure 6(b) Figure 6 (a)arrow_forwardSuppose that we want to design an amplifier that can produce a 100-kHz sine-wave output having a peak amplitude of 5 V. What is the minimum slew-rate specification allowed for the op amp?arrow_forward
- Choose the correct answer. *Please answer it ASAP if you can*arrow_forward1- Mention any two advantages of Integrated Circuit . 2- For the circuit given below : Vin is a sine wave Vinpp=6 V and Vref=-2.4 V , Assume Vsat=±12V Name the circuit and draw the input and output waveforms . Vin Vref 3- Explain why open-loop op-amp configurations are not used in linear applications? Draw the block diagram of opamp and define the function of each blockarrow_forwardDraw two op-amp circuits: 1. An input voltage is applied to the non-inverting terminal. The inverting terminal is shorted to the output. 2. An input voltage is applied to the inverting terminal. The non-inverting terminal is shorted to the output. Derive the I/O relationship of both of these circuits assuming the op-amps act ideally. Comment on differences/similarities.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electrical Engineering: Ch 5: Operational Amp (2 of 28) Inverting Amplifier-Basic Operation; Author: Michel van Biezen;https://www.youtube.com/watch?v=x2xxOKOTwM4;License: Standard YouTube License, CC-BY