Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem D2.39P
To determine
To sketch:The circuit configurations for the given functions.
To find:The input resistances for each function.
To suggest: Two additional summing functions that will be realized from the given circuit.
To realize: A function in order to a have a summing coefficient of 0.5.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1) Using the following input waveform shown in Figure 1, sketch the corresponding output waveform
for each op amp circuit shown in Figure 1(a through d). Assume ideal op amp behavior.
30 441
wwwww
25 AG
10 pF
100 k
www
(6)
1,0
330
www
10 LQ
www
51.02
540
M
530
www
10 KO
or
Which of the following statement about op-amp is wrong
A) linear model is more accurate than the ideal model
B) ideal model assumes R; is infinity and R, is zero
C) in ideal model, the currents into the two terminals are zeros
D) in ideal model, the nodal voltage of the inverting terminal is zero
Based on the simulation’s results, explain the function of a differential amplifier.
(Hints: comment on the shape of Vo1 and Vo2, explain what would happen if V1 and V2 were the same, reflect on why it is important that an ideal op-amp has infinite input impedance).
Chapter 2 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 2.1 - Prob. 2.1ECh. 2.1 - Prob. 2.2ECh. 2.1 - Prob. 2.3ECh. 2.2 - Prob. D2.4ECh. 2.2 - Prob. 2.5ECh. 2.2 - Prob. 2.6ECh. 2.2 - Prob. D2.7ECh. 2.2 - Prob. D2.8ECh. 2.3 - Prob. 2.9ECh. 2.3 - Prob. 2.10E
Ch. 2.3 - Prob. D2.11ECh. 2.3 - Prob. 2.12ECh. 2.3 - Prob. 2.13ECh. 2.3 - Prob. 2.14ECh. 2.4 - Prob. 2.15ECh. 2.4 - Prob. D2.16ECh. 2.4 - Prob. 2.17ECh. 2.5 - Prob. 2.18ECh. 2.5 - Prob. D2.19ECh. 2.5 - Prob. D2.20ECh. 2.6 - Prob. 2.21ECh. 2.6 - Prob. 2.22ECh. 2.6 - Prob. 2.23ECh. 2.6 - Prob. 2.24ECh. 2.6 - Prob. 2.25ECh. 2.7 - Prob. 2.26ECh. 2.7 - Prob. 2.27ECh. 2.7 - Prob. 2.28ECh. 2.8 - Prob. 2.29ECh. 2.8 - Prob. 2.30ECh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. D2.12PCh. 2 - Prob. D2.13PCh. 2 - Prob. D2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. D2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. D2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. D2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. D2.33PCh. 2 - Prob. D2.34PCh. 2 - Prob. D2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. D2.37PCh. 2 - Prob. D2.38PCh. 2 - Prob. D2.39PCh. 2 - Prob. D2.40PCh. 2 - Prob. D2.41PCh. 2 - Prob. D2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. D2.44PCh. 2 - Prob. D2.45PCh. 2 - Prob. D2.46PCh. 2 - Prob. D2.47PCh. 2 - Prob. D2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. D2.51PCh. 2 - Prob. D2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. D2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. D2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. D2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. D2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. D2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. D2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. D2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. D2.82PCh. 2 - Prob. D2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. D2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. D2.92PCh. 2 - Prob. D2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. D2.99PCh. 2 - Prob. D2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. D2.116PCh. 2 - Prob. D2.117PCh. 2 - Prob. D2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. D2.127P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- From Figure 3, write node-voltage equations: one for each input a. terminal of the op amp. b. The expression for the load current (i.) can be written as a function of the input voltage (V) and the load voltage (v.) iz = Avin + Bv, b.1. What is the expression for A? What should be the condition for R, R, R, and R4, so that B is b.2. zero? (NB: this condition will make i, depend only on v, and not on R.) R4 R3 OA1 R2 R1 RL Vin VL iL Figure 3arrow_forward4kΩ 5k2 3mA . 3ΚΩ 2k2 1kN Determine for the above ideal op-amp circuit, Vo, lo, and the power dissipated in the 2kn resistor. You may assume that the op-amp is ideal and always operates in the linear region.arrow_forwardHere is a single op-amp, shown under two different conditions (different input voltages). Determine the voltage gain of this op-amp, given the conditions shown. Also, write a mathematical formula solving for differential voltage gain (AV) in terms of an op-amp's input and output voltages. +12 V +12 V Va=1.00 V %3D Vout = 1.5 V +12 V V=1.00003 V %3D -12 V +12 V +12 V Va =1.00 V %3D Vet = 6.8 V +12 V V 1.00004 V -12 Varrow_forward
- Q1 Analyse the circuit shown in Figure Q1, (a) Name the function of each Op-Amp, A1, A2, A3, and A4 R: R2 O Voi 10k2 56kN |+15V R3 R4 A1 Vo2 Vi + 10k2 68k2 C 1-15V 0.3 sin ot V |+15V +15V Vo3 Rs 1 Hz A2 33µF |+15V Vo4 |-15V АЗ 100k2 A4 -15V |-15V Figure Q1arrow_forwardV1arrow_forwardChoose the correct answer. *Please answer it ASAP if you can*arrow_forward
- 1. Use the figure below for the following questions. R = 10N and V is a 5V DC source that can provide a maximum of 1 mA of current. The op-amp is ideal. Vin R Vo What is V, in volts? Enter answer here 2. What is Iut in miliamps?arrow_forwardPlease answer both questions not only one i will rate it Please botharrow_forwardThe op amp in the circuit in the figure is ideal. The dc signal source has a value of 840 mV. Part A Find the Thévenin voltage of the equivalent circuit with respect to the output terminals a, b. Express your answer with the appropriate units. ANSWER: VTh= RTh= Part C What is the output resistance of the inverting amplifier? Express your answer with the appropriate units. ANSWER: V Th Part B Find the Thévenin resistance of the equivalent circuit with respect to the output terminals a, b. Express your answer with the appropriate units. ANSWER: Ro= 1.6 ΚΩ www + 24 ΚΩ ww + 15 V -15 V RTh Va a barrow_forward
- Assume the op amps as shown are ideal except for power supply voltages of ±12 V. (a) If the input voltage is 5 mV, what are the voltages at the8 nodes in the circuit? (b) Repeat for an input voltage of 10 mV. (c) Repeat for an input voltage of 10 mV with an open-loop gain of 80 dB.arrow_forwardR1 V. R2 For this problem, you may assume ideal op-amp assumptions and that Ver supply voltage maximums can be ignored. For the above circuit, determine the output voltage V, to the nearest single digit decimal place with th following values V= 2 Volts V2= 8 Volts R= 6 Ohms R2= 2 Ohms R3= 5 Ohms 2:53 PM O Type here to search € 54°F 10/22/2021 hp ins prt sc end f12 delete home f10 f8 II f5 12 23 米 num & backspace lock 8 3 4 Y U home E R 700 %24 4184-A LEGOarrow_forwardEx. 5 For the circuit shown below, V1 = 10sin(200t) and V2 = 15sin(200t). What is Vout? The op amp is ideal with infinite gain. Cf=2µF HE R2=0.5M2 V2 +15 V. V1 R1=0.75M2 V+ Vout -15arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
What is a Power Amplifier, And Do I Need One?; Author: Sweetwater;https://www.youtube.com/watch?v=2wkmSm4V00M;License: Standard Youtube License