EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
6th Edition
ISBN: 8220102801448
Author: Alexander
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 77CP
Suppose your circuit laboratory has the following standard commercially available resistors in large quantities:
Using series and parallel combinations and a minimum number of available resistors, how would you obtain the following resistances for an electronic circuit design?
- (a) 5 Ω
- (b) 311.80 Ω
- (c) 40 kΩ
- (d) 52.32 kΩ
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2)This multiple choice question from MEASUREMENTS INSTRUMENTATIONS course.
A 0 – 150 voltmeter has a resistance of 2000-ohms per volt. It is desired to change this voltmeter to a 0 – 600 volt instrument by the edition of an external multiplier. What is the resistance, in ohms, of this external multiplier?
Figure 2
4. Consider the circuit in Figure 3. D1 is Gallium arsenide
and D2 is Silicon, each has a forward resistance of 500.
Determine the following:
a. The states of D1 and D2. Explain.
b. Current 11 through R1
c. Current 12 through R2
d. Current 13 through R3
e. Voltage Vo
Liv Hilt
R1
1092
V1
12V
(+2)
V1
D1
1V
50Hz
0°
1
D1
R2
1592
Figure 3
5. Do number 4 again, but this time reverse both the
positions of D1 and D2.
6. Consider the circuit in Figure 4.
a. Calculate the voltage across R3 during the positive
half cycle of the source voltage V1.
b. Calculate the voltage across R3 during the negative
half cycle of the source voltage V1.
c. Sketch the waveform of the voltage across R3.
R1
1kQ
V2
9V
D2
R3
10092
R2
1k92
D2
Vo
R3
1k92
Chapter 2 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
Ch. 2.2 - The essential component of a toaster is an...Ch. 2.2 - For the circuit shown in Fig. 2.9, calculate the...Ch. 2.2 - A resistor absorbs an instantaneous power of 30...Ch. 2.3 - How many branches and nodes does the circuit in...Ch. 2.4 - Find v1 and v2 in the circuit of Fig. 2.22. Figure...Ch. 2.4 - Find vx and vo in the circuit of Fig. 2.24. Figure...Ch. 2.4 - Find vo and io in the circuit of Fig. 2.26. Figure...Ch. 2.4 - Find the current and voltages in the circuit shown...Ch. 2.6 - By combining the resistors in Fig.2.36, find Req....Ch. 2.6 - Find Rab for the circuit in Fig.2.39. Figure 2.39...
Ch. 2.6 - Calculate Geq in the circuit of Fig.2.41. Figure...Ch. 2.6 - Find v1 and v2 in the circuit shown in Fig. 2.43....Ch. 2.7 - Transform the wye network in Fig. 2.51 to a delta...Ch. 2.7 - For the bridge network in Fig. 2.54, find Rab and...Ch. 2.8 - Refer to Fig. 2.55 and assume there are six light...Ch. 2.8 - Following the ammeter setup of Fig. 2.61. design...Ch. 2 - The reciprocal of resistance is: (a) voltage (b)...Ch. 2 - Prob. 2RQCh. 2 - Prob. 3RQCh. 2 - The maximum current that a 2W, 80 k resistor can...Ch. 2 - Prob. 5RQCh. 2 - The current I in the circuit of Fig. 2.63 is: (a)...Ch. 2 - The current I0 of Fig. 2.64 is: (a) 4 A (b) 2 A...Ch. 2 - In the circuit in Fig. 2.65, V is: (a) 30 V (b) 14...Ch. 2 - Which of the circuit in Fig. 2.66 will give you...Ch. 2 - In the circuit of Fig. 2.67, a decrease in R3...Ch. 2 - Design a problem, complete with a solution, to...Ch. 2 - Find the hot resistance of a light bulb rated 60...Ch. 2 - A bar of silicon is 4 cm long with a circular...Ch. 2 - (a) Calculate current i in Fig. 2.68 when the...Ch. 2 - For the network graph in Fig. 2.69. find the...Ch. 2 - In the network graph shown in Fig. 2.70, determine...Ch. 2 - Determine the number of branches and nodes in the...Ch. 2 - Design a problem, complete with a solution, to...Ch. 2 - Find i1, i2, and i3 in Fig. 2.73. Figure 2.73 For...Ch. 2 - Determine i1 and i2 in the circuit of Fig. 2.74....Ch. 2 - In the circuit of Fig. 2.75, calculate V1 and V2....Ch. 2 - In the circuit in Fig. 2.76, obtain v1, v2, and...Ch. 2 - For the circuit in Fig. 2.77, use KCL to find the...Ch. 2 - Given the circuit in Fig. 2.78, use KVL to find...Ch. 2 - Calculate v and ix in the circuit of Fig. 2.79....Ch. 2 - Determine Vo in the circuit in Fig. 2.80. Figure...Ch. 2 - Obtain v1 through v3 in the circuit of Fig. 2.81....Ch. 2 - Find I and V in the circuit of Fig. 2.82. Figure...Ch. 2 - From the circuit in Fig. 2.83, find I, the power...Ch. 2 - Determine io in the circuit of Fig. 2.84. Figure...Ch. 2 - Find Vx in the circuit of Fig. 2.85. Figure 2.85...Ch. 2 - Find Vo in the circuit in Fig. 2.86 and the power...Ch. 2 - In the circuit shown in Fig. 2.87, determine Vx...Ch. 2 - For the circuit in Fig. 2.88, find Vo/Vs in terms...Ch. 2 - For the network in Fig. 2.89, find the current,...Ch. 2 - For the circuit in Fig. 2.90, io = 3 A. Calculate...Ch. 2 - Calculate Io in the circuit of Fig. 2.91. Figure...Ch. 2 - Design a problem, using Fig. 2.92, to help other...Ch. 2 - All resistors (R) in Fig. 2.93 are 10 each. Find...Ch. 2 - For the circuit in Fig. 2.95, determine i1 to i5....Ch. 2 - Find i1 through i4 in the circuit in Fig. 2.96....Ch. 2 - Obtain v and i in the circuit of Fig. 2.97. Figure...Ch. 2 - Using series/parallel resistance combination, find...Ch. 2 - Calculate Vo and Io in the circuit of Fig. 2.99....Ch. 2 - Find i and Vo in the circuit of Fig. 2.100. Figure...Ch. 2 - Given the circuit in Fig. 2.101 and that the...Ch. 2 - Find Req and io in the circuit of Fig. 2.102....Ch. 2 - Evaluate Req looking into each set of terminals...Ch. 2 - For the ladder network in Fig. 2.104, find I and...Ch. 2 - If Req = 50 in the circuit of Fig. 2.105, find R....Ch. 2 - Reduce each of the circuits in Fig. 2.106 to a...Ch. 2 - Calculate the equivalent resistance Rab at...Ch. 2 - For the circuits in Fig. 2.108, obtain the...Ch. 2 - Find the equivalent resistance at terminals a-b of...Ch. 2 - Find I in the circuit of Fig. 2.110. Figure 2.110Ch. 2 - Find the equivalent resistance Rab in the circuit...Ch. 2 - Convert the circuits in Fig. 2.112 from Y to ....Ch. 2 - Transform the circuits in Fig. 2.113 from to Y....Ch. 2 - Design a problem to help other students better...Ch. 2 - Obtain the equivalent resistance at the terminals...Ch. 2 - For the circuit shown in Fig. 2.116, find the...Ch. 2 - Obtain the equivalent resistance Rab in each of...Ch. 2 - Consider the circuit in Fig. 2.118. Find the...Ch. 2 - Calculate I0 in the circuit of Fig. 2.119. Figure...Ch. 2 - Determine V in the circuit of Fig. 2.120. Figure...Ch. 2 - Find Req and I in the circuit of Fig. 2.121....Ch. 2 - The 150 W tight bulb in Fig. 2.122 is rated at 110...Ch. 2 - If the three bulbs of Prob. 2.59 are connected in...Ch. 2 - As a design engineer, you are asked to design a...Ch. 2 - Prob. 62PCh. 2 - If an ammeter with an internal resistance of 100 ...Ch. 2 - The potentiometer (adjustable resistor) Rx in Fig....Ch. 2 - Design a circuit that uses a dArsonval meter (with...Ch. 2 - A 20-k/V voltmeter reads 10 V full scale. (a) What...Ch. 2 - (a) Obtain the voltage Vo in the circuit of Fig....Ch. 2 - (a) Find the current I in the circuit of Fig....Ch. 2 - A voltmeter used to measure Vo in the circuit in...Ch. 2 - (a) Consider the Wheatstone bridge shown in Fig....Ch. 2 - Figure 2.131 represents a model of a solar...Ch. 2 - Find Vo in the two-way power divider circuit in...Ch. 2 - An ammeter model consists of an ideal ammeter in...Ch. 2 - The circuit in Fig. 2.134 is to control the speed...Ch. 2 - Find Rab in the four-way power divider circuit in...Ch. 2 - Repeat Prob. 2.75 for the eight-way divider shown...Ch. 2 - Suppose your circuit laboratory has the following...Ch. 2 - In the circuit in Fig. 2.137, the wiper divides...Ch. 2 - Prob. 79CPCh. 2 - A loudspeaker is connected to an amplifier as...Ch. 2 - For a specific application, the circuit shown in...Ch. 2 - The pin diagram of a resistance array is shown in...Ch. 2 - Two delicate devices are rated as shown in Fig....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 12 = ➖➖➖➖➖➖➖➖* + E Si ✈ D₁ 20 V R₂ 5.6 ΚΩ 3.32 mA 3.12 mA 3.55 mA 3.97 MA What is wrong with this circuit? * - V₁ 24 V R₁10 kn D₁ Si D₂ ID₂ 1N4744A 15 V The zener is open. The zener is shorted or damaged not enough data reversed connection of zener diode R₁ 3.3k92 4.790 1₁ R₂2.5 kn RLarrow_forwardIn the figure the current in resistance 6 is is = 1.34 A and the resistances are R, = R, = R3 = 1.62 2, Ra = 15.5 N, R5 = 8.87 S, and R, = 3.17 N. What is the emf of the ideal battery? R R2 R Rg R4 R6 Number Units the tolerance is +/-2%arrow_forwardIn step 3, what is the potential difference across D2 after the jumper wire is connectedarrow_forward
- 1. The no-load terminal voltage of a battery is 30 V. The terminal voltage drops to 22 V when supplying a current of 5 A. Determine the emf and the internal resistance of this battery. 2. Two identical zinc carbon batteries are available. When connected in series, they supply 0.5 A to a 4 ohm resistor. When connected in parallel, they supply 0.4 A to a 5 ohm resistor. Determine the emf and internal resistance of each battery. 3. When supplying a current of 5 A, the terminal voltage of a battery is 15 V. The battery is then recharged at a rate of 3 A and the terminal voltage is found to be 21 V. Determine the emf and the internal resistance of the battery. 4. A battery with an emf of 12 V and an internal resistance of 0.8 ohm is to be recharged through a 20 V source. (a) show by means of a diagram the connection of the circuit elements. (b) What is the current in the circuit? (c) The recharging current is to be limited to 3 A. What is the value of the limiting…arrow_forwardDon't provide handwriting solutionarrow_forwardGiven a current I3 equals to 5A with a Resistive Load of 10 ohms. Determine the Voltage drop across the 8 hmresistor (R1) and the total Current of the circuit.arrow_forward
- Determine the source to drain current of the circuit shown below. MYPMOS M1 |=5u w=20u V1 Parameter NMOS РMOS R1 K 120 μΑ/V 40 μΑ/V2 30k Vro 800 mV -900 mV 5 0.5 vV 0.6 vV 0.7 V 0.6 V 158.3675 uA 324.1629 uA 1.34 uA O 1.34 mAarrow_forward23 Implement and draw a multi-range voltmeter to obtain the voltage ranges of 0-5V, 0-20V, 0-50V, 0-100V. Im 3mA and Rm= 60 n.arrow_forward3)A voltmeter with resistance 'RV' is connected in parallel with resistance of 100.6 ohms. The applied voltage V= 100.2V. Determine the error (E) & percentage error (%E) in the measurement of voltage (V) due to loading effect of voltmeter when Rv =1.02 M earrow_forward
- Many electronic circuits use what is called a split or a dual power supply: 15 V Electronic circuit "Ground" 15 V B Determine what a digital voltmeter would indicate if connected between the following points: • Red lead on Ä", black lead on ground • Red lead on “B", black lead on ground • Red lead on Ä", black lead on "B" • Red lead on “B", black lead on Ä" NOTE: in electronic systems, “ground" is often not associated with an actual earth-soil contact. It usually only refers to a common point of reference somewhere in the circuit used to take voltage measurements. This allows us to specify voltages at single points in the circuit, with the implication that "ground" is the other point for the voltmeter to connect to.arrow_forward(01) Zener Diode Circuits. (Course: Electronic Devices and Circuit Theory) -Redraw and Apply. -You can add //comments for a better understanding. -Please answer without abbreviation. -Make it clean and clear typing/writing. Thank you.arrow_forwardQuestion 11 Not yet answered Marked out of 1.50 P Rlag question 11. Consider a PV Module with 4 solar PV cells with the Size of each 10cm x 10cm are connected in Parallel. Choose the correct statement for the above PV Module. (Assume necessary data) a. The output voltage is 2 V, the output power is 12W b.The output voltage is 0.5 V the output poweris 1W EThe outout voltageis 12V, the output power is CW 4:Theoutbutvotages.0 he outpu Question 12 Harqueseionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How do Solar cells work?; Author: Lesics;https://www.youtube.com/watch?v=L_q6LRgKpTw;License: Standard Youtube License