Concept explainers
Obtain the equivalent resistance Rab in each of the circuits of Fig. 2.117. In (b), all resistors have a value of 30 Ω.
Figure 2.117
(a)
Calculate the equivalent resistor at terminals a-b in Figure 2.117(a).
Answer to Problem 53P
The equivalent resistor at terminals a-b in Figure 2.117(a) is
Explanation of Solution
Formula used:
Consider the delta to wye conversions.
Here,
Consider the expression for
Here,
Consider the expression for
Calculation:
Refer to Figure 2.117(a) in the textbook For Prob.2.53.
Step 1:
In Figure 2.117(a), convert the delta connection into wye connection.
Consider
Substitute
Substitute
Substitute
Modify Figure 2.117(a) as shown in Figure 1.
Step 2:
In Figure 1, as
Step 3:
In Figure 1, as
Step 4:
In Figure 1, as
Modify Figure 1 as shown in Figure 2.
Step 5:
In Figure 2, as
Modify Figure 2 as shown in Figure 3.
Step 6:
In Figure 3, as
Conclusion:
Thus, the equivalent resistor at terminals a-b in Figure 2.117(a) is
(b)
Calculate the equivalent resistor at terminals a-b in Figure 2.117(b).
Answer to Problem 53P
The equivalent resistor at terminals a-b in Figure 2.117(b) is
Explanation of Solution
Given data:
All resistance have
Formula used:
Consider the following delta to wye conversion, when all branches in a delta consist same value.
Calculation:
Refer to Figure 2.117(b) in the textbook For Prob.2.53.
Step 1:
In Figure 2.117(b), at left most corner of circuit, as two resistors are connected in series, therefore the equivalent resistance for series connected circuit is calculated as follows.
Step 2:
As
Modify Figure 2.117(b) as shown in Figure 4.
Step 3:
In Figure 4, as in upper part of the circuit all three
Substitute
Since all branch values are same in a delta connection that is
Modify Figure 4 as shown in Figure 5.
Step 4:
In Figure 5, as
Step 5:
In Figure 5, as in right most part of the circuit all three
Substitute
Since all branch values are same in a delta connection that is
Modify Figure 5 as shown in Figure 6.
Step 6:
In Figure 6, as
Step 7:
In Figure 6, as
Step 8:
As
Modify Figure 6 as shown in Figure 7.
Step 4:
In Figure 7, as
Conclusion:
Thus, the equivalent resistor at terminals a-b in Figure 2.117(b) is
Want to see more full solutions like this?
Chapter 2 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
Additional Engineering Textbook Solutions
Modern Database Management
Mechanics of Materials (10th Edition)
Starting Out With Visual Basic (8th Edition)
Vector Mechanics for Engineers: Statics and Dynamics
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
- Consider the lateral dynamics of a vectored thrust aircraft as described in Example 3.12. Show that the dynamics can be described using the following block diagram: Ꮎ r ալ -mg Σ J82 ע 1 X ms² + cs Use this block diagram to compute the transfer functions from u₁ to 0 and x and show that they satisfy Нои r Js² - mgr Js²' Hau₁ Js2 (ms2+cs)arrow_forwardConsider the system dx ax+u. dt Compute the exponential response of the system and use this to derive the transfer function from u to x. Show that when s = a, a pole of the transfer function, the response to the exponential input u(t) = est is x(t) = eat x(0) + teat. For solving the system with u = eat eat you can't use the transfer function because the denominator is zero. Try using the convolution integral solution with initial conditions set as x(t) = eat x (0) + fo g(t − T)u(T)dT - g(t) is the impulse response of the system.arrow_forwarddny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differentialarrow_forward
- dny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differentialarrow_forwardFor step a), use equations (2) to find the equation for the input impedance equations (2) are V1 = jwL1I1 + jwMI2 and V2 = jwMI1 + jwL2I2 equation for the input impedance: Z1 = V1/I1 = jwL1 + (wM)2/(jwL2 + ZL)arrow_forwardL (a) Find currents i, and b₂ 2 2 (b) Find the dependent source voltage given as Find voltages V, and (c) V₂ 5i2 (d) For each circuit element in the circuit and the two Sources, state whether they are ABSORBING OF SUPPYING Power and how much power is absorbed or Supplied. + V - 5A +lov- C/E₂ + C/E4 Vz い 5+2 + 1A C/E 5V + シュ 2A + 10Varrow_forward
- 4) A circuit is given as shown. (a) Find currents i, and i2. (b) Find the dependent source voltage given as 5i2 (c) Find voltages V, and V₂ 2 (d) For each circuit element in the circuit and the two Sources, State whether they are ABSORBING, OF SUPPLYING POWER and how much power is absorbed or supplied. + 10V - + 4 CIES C/E + V L₁ 4 1A Y T5A GE -5V + CIES iz 2A 2 52 2 +arrow_forwardDetermine the eigenvalues and eigenvectors of using A = ( 1 -3 3 3 -5 3 6-64 Gauss eliminationarrow_forward5) A circuit is given as shown (a) Find currents i₁, L2 and is . (6) Find voltages V, V2, V3 and Vy (c) For each circuit element in the circuit and the two sources, state whether they are ABSORBING SUPPLYING POWER and how much power is absorbed or supplied. + V₁ CIE, 1A +2V- C/E AS 1A + - 4A Vy+ CES CIES 2A4 + IOV +- + + V2 1 434 12V GVarrow_forward
- Determine the eigenvalues and eigenvectors of using Gauss A = -3 322 20 132 -3° 10 -2 4 eliminationarrow_forwardDetermine the eigenvalues and eigenvectors of 1-3 3 A = 3-53 6-64arrow_forward(6) Determine currents 41, 42, 43, Ly and is CE 5 4A A है C d 62 4A 23 (a) nodes: a, b, c, d, e, f (6) 1A E b C/E 25 Ly 5Aarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,